Skip to main content
Log in

Improvements in remote video based estimation of heart rate variability using the Welch FFT method

  • Original Article
  • Published:
Artificial Life and Robotics Aims and scope Submit manuscript

Abstract

Non-contact heart rate and heart rate variability measurements have applications in healthcare and affective computing. Recently, a system utilizing a five-band camera (RGBCO: red, green, blue, cyan, orange) was proposed, and shown to improve both remote measurement of heart rate and heart rate variability over an RGB camera. In this paper, we propose an improved method for video-based estimation of heart rate variability. We introduce three advancements over previous work utilizing five-band cameras: (1) an adaptive non-rectangular region of interest identified using automatically detected facial feature points, (2) improved peak detection within the blood volume pulse (BVP) signal, and (3) improved HRV calculation using the Welch periodogram. We apply our method to a test dataset of subjects at rest and under cognitive stress and show qualitative improvements in the stability of HRV spectrogram estimation. Although we evaluate our method using a five-band camera, the method could be applied to video recorded with any camera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Verkruysse W, Svaasand LO, Nelson JS (2008) Remote plethysmographic imaging using ambient light. Opt Express 16(26):21434–21445

    Article  Google Scholar 

  2. Poh M-Z, McDuff DJ, Picard RW (2010) Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt Express 18(10):10762–10774

    Article  Google Scholar 

  3. Poh M-Z, McDuff D, Picard RW (2011) Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Trans Biomed Eng 58(1):7–11

    Article  Google Scholar 

  4. Pagani M, Furlan R, Pizzinelli P, Crivellaro W, Cerutti S, Malliani A (1989) Spectral analysis of R-R and arterial pressure variabilities to assess sympatho-vagal interaction during mental stress in humans. J Hypertens 7(Suppl 6):S14–S15

    Article  Google Scholar 

  5. McDuff D, Gontarek S, Picard RW (2014) Improvements in remote cardio-pulmonary measurement using a five band digital camera. IEEE Trans Biomed Eng 61(10):2593–2601

    Article  Google Scholar 

  6. Monno Y, Tanaka M, Okutomi M (2012) Multispectral demosaicking using guided filter. In: IS&T/SPIE electronic imaging. International society for optics and photonics, pp 82 990O-82 990O

  7. MonnoY Kikuchi S, Tanaka M, Okutomi M (2015) A practical one-shot multispectral imaging system using a single image sensor. IEEE Trans Image Process 24(10):3048–3059

    Article  MathSciNet  Google Scholar 

  8. Lomb N (1976) Least-squares frequency analysis of unequally spaced data. Astrophys Space Sci 39(2):447–462

    Article  Google Scholar 

  9. Scargle JD (1982) Studies in astronomical time series analysis II-statistical aspects of spectral analysis of unevenly spaced data. Astrophys J 1:835–853

    Article  Google Scholar 

  10. Press William H, Rybicki George B (1989) Fast algorithm for spectral analysis of unevenly sampled data. Astrophys J 338:277–280

    Article  Google Scholar 

  11. Schulz M, Stattegger K (1997) Spectrum: spectral analysis of unevenly spaced paleoclimatic time series. Comput Geosci 23(9):929–945

    Article  Google Scholar 

  12. Welch P (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15(2):70–73

    Article  Google Scholar 

  13. Martinez B, Valstar MF, Binefa X, Pantic M (2013) Local evidence aggregation for re-gression-based facial point detection. IEEE Trans Pattern Anal Mach Intell 35(5):1149–1163

    Article  Google Scholar 

  14. Kazemi V, Sullivan J (2014) One millisecond face alignment with an ensemble of regression trees. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1867–1874

  15. De Haan G, Jeanne V (2013) Robust pulse rate from chrominance-based rPPG. IEEE Trans Biomed Engineering 60(10):2878–2886

    Article  Google Scholar 

  16. Wang Wenjin, den Brinker Albertus C, Stuijk Sander, de Haan Gerard (2017) Algorithmic principles of remote PPG. IEEE Trans Biomed Eng 64(7):1479–1491

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munenori Fukunishi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukunishi, M., Mcduff, D. & Tsumura, N. Improvements in remote video based estimation of heart rate variability using the Welch FFT method. Artif Life Robotics 23, 15–22 (2018). https://doi.org/10.1007/s10015-017-0393-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10015-017-0393-y

Keywords

Navigation