Skip to main content
Log in

ASKME: adaptive sampling with knowledge-driven vectorization of mechanical engineering drawings

  • Original Paper
  • Published:
International Journal on Document Analysis and Recognition (IJDAR) Aims and scope Submit manuscript

Abstract

We propose here an efficient algorithm for high-level vectorization of scanned images of mechanical engineering drawings. The algorithm is marked by several novel features, which merit its superiority over the existing techniques. After preprocessing and necessary refinement of junction points in the image skeleton, it first extracts the graphic primitives, such as lines, circles, and arcs, based on certain digital geometric properties of straightness and circularity in the discrete domain. The primitives are classified into different types with all associated details based on fast and efficient geometric analysis. The vector set is succinctly reduced by such classification in tandem with further consolidation to make out meaningful objects like rectangles and annuli, together with hatching information. Exhaustive testing shows the efficiency of the algorithm and also its robustness and stability toward any affine transformation and injected noise. Easy reconstruction to scalable vector graphics demonstrates its readiness and usability as a state-of-the-art solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. 3rd/5th IAPR international workshop on Graphics RECognition (Arc Contest). http://www.cs.cityu.edu.hk/~liuwy/ArcContest (2003/2005)

  2. 7th IAPR international workshop on Graphics RECognition (Arc Segmentation Contest). http://www.iapr.org/arcseg2007 (2007) (The dataset was available in the website till 2007)

  3. 10th IAPR international workshop on Graphics RECognition (Line and Arc Segmentation Contest). http://grec2013.loria.fr/GREC2013/ (2013)

  4. Al-Khaffaf, H., Talib, A.Z., Salam, R.A.: Removing salt-and-pepper noise from binary images of engineering drawings. In: Proceedings of Nineteenth International Conference on Pattern Recognition, pp. 1–4 (2008)

  5. Al-Khaffaf, H.S.M., Talib, A.Z., Abdul. R.: Salt and pepper noise removal from document images. In: Visual Informatics: Bridging Research and Practice, volume 5857 of Lecture Notes in Computer Science, pp. 607–618 (2009)

  6. Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recognit. 13(2), 111–122 (1981)

    Article  MATH  Google Scholar 

  7. Bhowmick, P., Bhattacharya, B.B.: Fast polygonal approximation of digital curves using relaxed straightness properties. IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1590–1602 (2007)

    Article  Google Scholar 

  8. Bhowmick, P., Bhattacharya, B.B.: Number-theoretic interpretation and construction of a digital circle. Discrete Appl. Math. 156(12), 2381–2399 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chinnasarn, K., Rangsanseri, Y., Thitimajshima, P.: Removing salt-and-pepper noise in text/graphics images. In: Proceedings of the IEEE Asia-Pacific Conference on Circuits and Systems, pp. 459–462 (1998)

  10. Chowdhury, S.P., Mandal, S., Das, A.K., Chanda, B.: Segmentation of text and graphics from document images. In: Proceedings of the Ninth International Conference on Document Analysis and Recognition, vol. 2, pp. 619–623 (2007)

  11. di Baja, G.S.: Well-shaped, stable, and reversible skeletons from the (3, 4)-distance transform. J. Vis. Commun. Image Represent. 5(1), 107–115 (1994)

    Article  Google Scholar 

  12. Dori, D.: Orthogonal zig-zag: an algorithm for vectorizing engineering drawings compared with hough transform. Adv. Eng. Softw. 28(1), 11–24 (1997)

    Article  Google Scholar 

  13. Dori, D., Liu, W.: Stepwise recovery of arc segmentation in complex line environments. Int. J. Doc. Anal. Recognit. 1(1), 62–71 (1998)

    Google Scholar 

  14. Dori, D., Liu, W.: Sparse pixel vectorization: an algorithm and its performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 21(3), 202–215 (1999)

    Article  Google Scholar 

  15. Elliman, D.: A really useful vectorization algorithm. In: Proceedings of Third International Workshop on Graphics Recognition, GREC’99, pp. 19–27 (1999)

  16. Elliman, D.: TIF2VEC, an algorithm for arc segmentation in engineering drawings. Gr. Recognit. Algorithms Appl. 2390, 350–358 (2002)

    Article  Google Scholar 

  17. Escribano, C., Giraldo, A., Sastre, M.: Digitally continuous multivalued functions, morphological operations and thinning algorithms. J. Math. Imaging Vis. 42(1), 76–91 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fletcher, L.A., Kasturi, R.: A robust algorithm for text string separation from mixed text/graphics images. IEEE Trans. Pattern Anal. Mach. Intell. 10(6), 910–918 (1988)

    Article  Google Scholar 

  19. Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision. Addision-Wesley, Reading (1992)

    Google Scholar 

  20. Henderson, T.C.: Analysis of Engineering Drawings and Raster Map Images. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  21. Hilaire, X., Tombre, K.: Robust and accurate vectorization of line drawings. IEEE Trans. Pattern Anal. Mach. Intell. 28(6), 890–904 (2006)

    Article  Google Scholar 

  22. Hori, O., Tanigawa, S.: Raster-to-vector conversion by line fitting based on contours and skeletons. In: Proceedings of the Second International Conference on Document Analysis and Recognition, ICDAR’93, pp. 353–358 (1993)

  23. ISO 128: Technical Drawings—General Principles of Presentation (Parts 1, 23, 24). International Organization for Standardization, Geneva (2003)

    Google Scholar 

  24. Joseph, S.H., Pridmore, T.P.: Knowledge-directed interpretation of mechanical engineering drawings. IEEE Trans. Pattern Anal. Mach. Intell. 14(9), 928–940 (1992)

    Article  Google Scholar 

  25. Kasturi, R., Bow, S.T., El-Masri, W., Shah, J., Gattiker, J.R., Mokate, U.B.: A system for interpretation of line drawings. IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 978–992 (1990)

    Article  Google Scholar 

  26. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  27. Ko, S., Lee, Y.: Center weighted median filters and their applications to image enhancement. IEEE Trans. Circuits Syst. 38(9), 984–993 (1991)

    Article  Google Scholar 

  28. Lam, L., Lee, S.-W., Suen, C.: Thinning methodologies—a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 14(9), 869–885 (1992)

    Article  Google Scholar 

  29. O’Gorman, L.: Image and document processing techniques for the RightPages electronic library system. In: Proceedings of Eleventh IAPR International Conference on Pattern Recognition, pp. 260–263 (1992)

  30. Otsu, N.: A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybernet. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  31. Pal, S., Bhowmick, P.: Determining digital circularity using integer intervals. J. Math. Imaging Vis. 42(1), 1–24 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rosenfeld, A.: Digital straight line segments. IEEE Trans. Comput. 23(12), 1264–1269 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  33. Scalable Vector Graphics. http://en.wikipedia.org/wiki/Scalable_Vector_Graphics (2014)

  34. Simmons, C., Maguire, D., Phelps, N.: Manual of Engineering Drawing (Technical Product Specification and Documentation to British and International Standards, 3rd Edition). Elsevier, Amsterdam (2010)

    Google Scholar 

  35. Song, J., Lyu, M.R., Cai, S.: Effective multiresolution arc segmentation: algorithms and performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1491–1506 (2004)

    Article  Google Scholar 

  36. Song, J., Su, F., Chen, J., Tai, C.: Line net global vectorization: an algorithm and its performance evaluation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 383–388 (2000)

  37. Song, J., Su, F., Tai, C.L., Cai, S.: An object-oriented progressive-simplification-based vectorization system for engineering drawings: model, algorithm, and performance. IEEE Trans. Pattern Anal. Mach. Intell. 24(8), 1048–1060 (2002)

    Article  Google Scholar 

  38. Story, G.A., O’Gorman, L., Fox, D., Schaper, L.L., Jagadish, H.V.: The RightPages image-based electronic library for alerting and browsing. IEEE Comput. 25(9), 17–26 (1992)

    Article  Google Scholar 

  39. SVG stands for Scalable Vector Graphics. http://www.w3schools.com/svg (1999). Copyright 1999–2014 by Refsnes Data

  40. Wenyin, L., Zhang, W., Yan, L.: An interactive example-driven approach to graphics recognition in engineering drawings. Int. J. Doc. Anal. Recognit. 9(1), 13–29 (2007)

    Article  Google Scholar 

  41. Yu, Y., Samal, A., Seth, S.: A system for recognizing a large class of engineering drawings. IEEE Trans. Pattern Anal. Mach. Intell. 19(8), 868–890 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to the anonymous reviewers for their detailed reviews and constructive comments, which have helped us in presenting the paper up to its merit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Bhowmick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, P., Mandal, S., Bhowmick, P. et al. ASKME: adaptive sampling with knowledge-driven vectorization of mechanical engineering drawings. IJDAR 19, 11–29 (2016). https://doi.org/10.1007/s10032-015-0255-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10032-015-0255-x

Keywords

Navigation