Skip to main content
Log in

Fingerprint verification based on minutiae features: a review

  • Original Article
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Fingerprints have been an invaluable tool for law enforcement and forensics for over a century, motivating research into automated fingerprint-based identification in the early 1960s. More recently, fingerprints have found an application in biometric systems. Biometrics is the automatic identification of an individual based on physiological or behavioural characteristics. Due to its security-related applications and the current world political climate, biometrics is presently the subject of intense research by private and academic institutions. Fingerprints are emerging as the most common and trusted biometric for personal identification. The main objective of this paper is to review the extensive research that has been done on automated fingerprint matching over the last four decades. In particular, the focus is on minutiae-based algorithms. Minutiae features contain most of a fingerprint’s individuality, and are consequently the most important fingerprint feature for verification systems. Minutiae extraction, matching algorithms, and verification performance are discussed in detail, with open problems and future directions identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1. a
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6. a
Fig. 7.
Fig. 8.
Fig. 9. a
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

Notes

  1. In Australia, the first official fingerprint branch was opened in 1903.

  2. The database maintained by Australian law enforcement agencies contains around 2.1 million prints.

  3. Australian law enforcement agencies also acquire palm prints from offenders. Palms are covered by the same type of skin as finger tips, and can therefore be used for identification as well

  4. Australian police are in the process of updating their facilities to make high-end live-scan units available at most major police branches around the country.

  5. In our case, we assume the images are the same resolution and consider only translation and rotation, but Ratha et al. also consider scaling.

  6. Australian police use an AFIS developed by SAGEM

References

  1. Federal Bureau of Investigation (FBI) (2003) http://www.fbi.gov. Cited October 2003

  2. Jain A, Hong L, Pankanti S (2000) Biometrics: promising frontiers for emerging identification market. Comm ACM Feb:91–98

    Google Scholar 

  3. Pankanti S, Prabhakar S, Jain A (2002) On the individuality of fingerprints. IEEE Trans Patt Anal Mach Intell 24(8):1010–1025

    Article  Google Scholar 

  4. Beavan C (2002) Fingerprints, murder and the race to uncover the science of identity. Fourth Estate, London

  5. Cummins H, Midlo C (1961) Finger prints, palms and soles, an introduction to dermatoglyphics. Dover Publications, Mineola, NY

  6. Herschel W (1916) The origin of finger-printing. Oxford University Press, London

  7. Faulds H (1880) On the skin-furrows of the hand. Nature 22(574):605

    Google Scholar 

  8. Galton F (1892) Finger prints. McMillan, London

  9. Henry E (1900) Classification and uses of finger prints. Routledge, London

  10. Jain A, Prabhakar A, Pankanti A (2002) On the similarity of identical twin fingerprints. Patt Recog 35(11):2653–2663

    Article  MATH  Google Scholar 

  11. Wilson C, Candela G, Watson C (1993) Neural network fingerprint classification. J Artif Neur Ntwks 1(2):203–228

    Google Scholar 

  12. Trauring M (1963) Automatic comparison of finger-ridge patterns. Nature 197:938–940

    Google Scholar 

  13. Jain A, Hong L, Pankanti S, Bolle R (1997) An identity-authentication system using fingerprints. Proc IEEE 85(9):1365–1388

    Article  Google Scholar 

  14. Federal Bureau of Investigation (FBI) (1993) WSQ gray-scale fingerprint image compression specification. Document IAFIS-IC-0110v2

  15. Sherlock B, Monro D, Millard K (1994) Fingerprint enhancement by directional fourier filtering. IEEE Proc Vis Imag Sig Process 141(2):87–94

    Article  Google Scholar 

  16. Kamei T, Mizoguchi M (1995) Image filter design for fingerprint enhancement. Proc ISCV 109–114

  17. Candela G, Grother P, Watson C, Wilkinson R, Wilson C (1995) PCASYS—a pattern-level classification automation system for fingerprints. NISTIR 5647, National Institute of Standards and Technology, Gaithersburg, MD

  18. Willis A, Myers L (2001) A cost-effective fingerprint recognition system for use with low-quality prints and damaged fingertips. Patt Recog 34:255–270

    Article  MATH  Google Scholar 

  19. Hong L, Wan Y, Jain A (1998) Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans Patt Anal Mach Intell 20:777–789

    Article  Google Scholar 

  20. Saatci E, Tavsanoglu V (2002) Fingerprint image enhancement using CNN gabor-type filters. In: Proceedings of CNNA 2002, Frankfurt, Germany, 22–24 July 2002, pp 377–382

  21. Kim B, Kim H, Park D (2002) New enhancement algorithm for fingerprint images. In: Proceedings of ICPR 2002, Quebec, Canada, 11–15 August 2002, 3:879–882

  22. Zhang W, Wang Q, Tang Y (2002) A wavelet-based method for fingerprint image enhancement. Proc Mach Learn Cybern 4:1973–1977

    Google Scholar 

  23. Hsieh C, Lai E, Wang Y (2003) An effective algorithm for fingerprint image enhancement based on wavelet transform. Patt Recog 36:303–312

    Article  Google Scholar 

  24. Greenberg S, Aladjem M, Kogan D, Dimitrov I (2000) Fingerprint image enhancement using filtering techniques. In: Proceedings of ICPR 2000, Barcelona, Spain, 3–8 August 2000, 3:322–325

  25. Wahab A, Chin S, Tan E (1998) Novel approach to automated fingerprint recognition. IEEE Proc Vis Imag Sig Process 145(3):160–166

    Article  Google Scholar 

  26. Mital D, Teoh E (1996) An automated matching technique for fingerprint identification. In: Proceedings of EFTA 1996 1:87–92

  27. Ailisto A, Lindholm M, Tikkanen P (2003) A review of fingerprint image enhancement methods. Int J Imag Graph 3(3):401–424

    Article  Google Scholar 

  28. Ratha NK, Connell JH, Bolle RM (2001) Enhancing security and privacy in biometrics-based authentication systems. IBM Sys J 40(3):614–634

    Google Scholar 

  29. Ratha NK, Connell JH, Bolle RM (2003) Biometrics break-ins and band-aids. Patt Recog Lett 24:2105–2113

    Article  Google Scholar 

  30. Kass M, Witkin A (1987) Analyzing oriented patterns. Comp Vis Graph Imag Proc 37(3):362–385

    Google Scholar 

  31. Jain A, Hong L, Bolle R (1997) On-line fingerprint verification. IEEE Trans Patt Anal Mach Intell 19(4):302–314

    Article  Google Scholar 

  32. Rao A (1990) A taxonomy for texture description and identification. Springer, Berlin Heidelberg New York

  33. Stock RM, Swonger CW (1969) Development and evaluation of a reader of fingerprint minutiae. Cornell Aeronautical Laboratory 1969, Technical Report CAL No. XM-2478-X-1:13–17, Ithaca, NY

  34. Chang J, Fan K (2001) Fingerprint ridge allocation in direct gray-scale domain. Patt Recog 34:1907–1925

    Article  MATH  Google Scholar 

  35. Fitz AP, Green RJ (1996) Fingerprint classification using a hexagonal fast fourier transform. Patt Recog 29(10):1587–1597

    Article  Google Scholar 

  36. Rao T (1976) Feature extraction for fingerprint classification. Patt Recog 8:181–192

    Article  MATH  Google Scholar 

  37. Farina A, Vajna Z, Leone A (1999) Fingerprint minutiae extraction from skeletonized binary images. Patt Recog 32:877–889

    Article  Google Scholar 

  38. Chen Z, Kuo C (1991) A topology-based matching algorithm for fingerprint authentication. In: Proceedings of the 25th Annual IEEE International Carnahan Conference on Security Technology, Taipei, Taiwan, 1–3 October 1991, pp 84–87

  39. Ratha N, Chen S, Jain A (1995) Adaptive flow orientation based feature extraction in fingerprint images. Patt Recog 28:1657–1672

    Article  Google Scholar 

  40. Xiao Q, Raafat H (1991) Fingerprint image postprocessing: a combined statistical and structural approach. Patt Recog 24(10):985–992

    Article  Google Scholar 

  41. Hung D (1993) Enhancement and feature purification of fingerprint images. Patt Recog 26(11):1661–1671

    Article  Google Scholar 

  42. Maio D, Maltoni D (1997) Direct gray-scale minutiae detection in fingerprints. IEEE Trans Patt Anal Mach Intell 19(1):27–40

    Article  Google Scholar 

  43. Jiang X, Yau W, Ser W (2001) Detecting the fingerprint minutiae by adaptive tracing the gray-level ridge. Patt Recog 34:999–1013

    Article  MATH  Google Scholar 

  44. Liu J, Huang Z, Chan K (2000) Direct minutiae extraction from gray-level fingerprint image by relationship examination. Proc ICIP 2000 2:427–430

    MATH  Google Scholar 

  45. Sagar V, Ngo D, Foo K (1995) Fuzzy control for fingerprint feature selection. Proc ACCV 1995 3:767–771

    Google Scholar 

  46. Sagar V, Koh A (1999) Hybrid fuzzy logic and neural network model for fingerprint minutiae extraction. Proc IJCNN 1999 5:3255–3259

    Article  Google Scholar 

  47. Maio D, Maltoni D (1998) Neural network based minutiae filtering in fingerprints. Proc ICPR 1998 2:1654–1658

    Article  Google Scholar 

  48. Prabhakar S, Jain A, Pankanti S (2003) Learning fingerprint minutiae location and type. Patt Recog 36(8):1847–1857

    Article  Google Scholar 

  49. Hatano T, Adachi T, Shigematsu S, Morimura H, Onishi S, Okazaki Y, Kyuragi H (2002) A fingerprint verification algorithm using the differential matching rate. In: Proceedings of ICPR 2002, Quebec, Canada, 11–15 August 2002, 3:799–802

  50. Ceguerra A, Koprinska I (2002) Integrating local and global features in automatic fingerprint verification. In: Proc ICPR 2002, Quebec, Canada, 11–15 August 2002, 3:347–350

  51. Wang S, Lee C (1999) Fingerprint recognition using directional micropattern histograms and LVQ networks. Proc Info Intell Sys 1999, pp 300–303

  52. Lee W, Chung J (1997) Fingerprint recognition algorithm development using direction information in wavelet transform domain. In: Proceedings of the IEEE International Symposium on Circuits and Systems, Hong Kong, China, June 1997, pp 1201–1204

  53. Lee S, Nam B (1999) Fingerprint recognition using wavelet transform and probabilistic neural network. Proc IJCNN 1999 5:3276–3279

    Google Scholar 

  54. Tico M, Immonen E, Ramo P, Kuosmanen P, Saarinen J (2001) Fingerprint recognition using wavelet features. Proc ISCAS 2001 2:21–24

    Article  Google Scholar 

  55. Jain A, Prabhakar S, Hong L, Pankanti S (2000) Filterbank-based fingerprint matching. IEEE Trans Imag Proc 9(5):846–859

    Article  Google Scholar 

  56. Lee C, Wang S (2001) Fingerprint feature reduction by principal gabor basis function. Patt Recog 34:2245–2248

    Article  MATH  Google Scholar 

  57. Ross A, Reisman J, Jain A (2002) Fingerprint matching using feature space correlation. In: Proceedings of the Post-ECCV Workshop in Biometric Authentication 2002, Lecture Notes in Computer Science, vol 2359, pp 48–57, Springer, Berlin Heidelberg New York

  58. Seow B, Yeoh S, Lai S, Abu N (2002) Image based fingerprint verification. In: Proceedings of the 2002 Student Conference on Research and Development, Shah Alam, Malaysia, May 2002, pp 58–61

  59. Jin A, Chekima A, Dargham J, Fan L (2002) Fingerprint identification and recognition using backpropagation neural network. In: Proceedings of the 2002 Student Conference on Research and Development, Shah Alam, Malaysia, May 2002, pp 98–101

  60. Sujan V, Mulqueen M (2002) Fingerprint identification using space invariant transforms. Patt Recog Lett 23:609-619

    Article  MATH  Google Scholar 

  61. Soifer V, Kotlyar V, Khonina S, Skidanov R (1996) Fingerprint identificaion using the directions field. Proc ICPR 1996 3:586–590

    Article  Google Scholar 

  62. Wilson C, Watson C, Paek E (2000) Effect of resolution and image quality on combined optical and neural network fingerprint matching. Patt Recog 33:317–331

    Article  Google Scholar 

  63. Alam M, Akhteruzzaman M (2000) Real time fingerprint identification. In: Proceedings of NAECON 2000, Dayton, OH, 10–12 October 2000, pp 434–440

  64. Prabhakar S, Jain A (2001) Decision-level fusion in fingerprint verification. Patt Recog 35:861–874

    Article  MATH  Google Scholar 

  65. Lumini A, Maio D, Maltoni D (1997) Continuous versus exclusive classification for fingerprint retrieval. Patt Recog Lett 18:1027–1034

    Article  Google Scholar 

  66. Cappelli R, Lumini A, Maio D, Maltoni D (1999) Fingerprint classification by directional image partitioning. IEEE Trans Patt Anal Mach Intell 21(5):402–421

    Article  Google Scholar 

  67. Bebis G, Deaconu T, Georgiopoulous M (1999) Fingerprint identification using delaunay triangularion. In: Proceedings of Information Intelligence and Systems, 31 October–3 November 1999, Bethesda, MD, pp 452–459

  68. Bhanu B, Tan X (2003) Fingerprint indexing based on novel features of minutiae triplets. IEEE Trans Patt Anal Mach Intell 25(5):616–622

    Article  Google Scholar 

  69. Bolle R, Connell J, Ratha N (2002) Biometric perils and patches. Patt Recog 35:2727–2738

    Article  MATH  Google Scholar 

  70. Ratha N, Karu K, Chen S, Jain A (1996) A real-time matching system for large fingerprint databases. IEEE Trans Patt Anal Mach Intell 18(8):799–813

    Article  Google Scholar 

  71. Isenor D, Zaky S (1986) Fingerprint identification using graph matching. Patt Recog 19(2):113–122

    Article  Google Scholar 

  72. Fan K, Liu C, Wang Y (2000) A randomized approach with geometric constraints to fingerprint verification. Patt Recog 33:1793–1803

    Article  Google Scholar 

  73. Hrechak A, McHugh J (1990) Automated fingerprint recognition using structural matching. Patt Recog 23(8):893–904

    Article  Google Scholar 

  74. Jiang X, Yau W (2000) Fingerprint minutiae matching based on the local and global structures. In: Proceedings of ICPR 2000, Barcelona, Spain, 3–8 August 2000 2:1038–1041

  75. Ratha N, Pandit V, Bolle R, Vaish V (2000) Robust fingerprint authentication using local structural similarity. In: Proceedings of the Fifth IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 4–6 December 2000, pp 29–34

  76. Qun R, Jie T, Yuliang H, Jiangang C (2002) Automatic fingerprint identification using cluster algorithm. In: Proceedings of ICPR 2002, Quebec, Canada, 11–15 August 2002, 2:398–401

  77. Luo X, Tian J, Wu Y (2000) A minutia matching algorithm in fingerprint verification. In: Proceedings of the IEEE International Conference on Pattern Recognition, 4:4833–4836

  78. He Y, Tian J, Luo X, Zhang T (2003) Image enhancement and minutiae matching in fingerprint verification. Patt Recog Lett 24:1349–1360

    Article  MATH  Google Scholar 

  79. Garmain RS, Califano A, Colville S (1997) Fingerprint matching using transformation parameter clustering. IEEE Comput Sci Eng 4(4):42–49

    Article  Google Scholar 

  80. Kovacs-Vajna Z (2000) A fingerprint verification system based on triangular matching and dynamic time warping. IEEE Trans Patt Anal Mach Intell 22(11):1266–2000

    Article  Google Scholar 

  81. Zhang W, Wang Y (2002) Core-based structure matching algorithm of fingerprint verification. In: Proceedings of ICPR 2002, Quebec, Canada, 11–15 August 2002, 1:70–74

  82. Bazen A, Gerez S (2003) Fingerprint matching by thin-plate spline modelling deformations. Patt Recog 36:1859–1867

    Article  Google Scholar 

  83. Cappelli R, Maio D, Maltoni D. Modeling plastic distortion in fingerprint images. In: Proceedings of ICAPR 2001, Rio de Janeiro, Brazil, March 2000

  84. Almansa A, Cohen L (2000) Fingerprint matching by minimization of a thin-plate energy using a two-step algorithm with auxiliary variables. In: Proceedings of the IEEE Workshop on Applications of Computer Vision 2000, Palm Springs, CA, 4–6 December 2000, pp 35–40

  85. Bookstein F (1989) Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Patt Anal Mach Intell 11(6):567–585

    Article  MATH  Google Scholar 

  86. Lee D, Choi K, Kim J (2002) A robust fingerprint matching algorithm using local alignment. In: Proceedings of ICPR 2002, Quebec, Canada, 11–15 August 2002, 3:803–806

  87. Hao Y, Tan T, Wang Y (2002) Fingerprint matching based on error propagation. In: Proceedings of ICPR 2002, Quebec, Canada, 11–15 August 2002, 1:273–276

  88. Quek C, Tan K, Sagar V (2001) Pseudo-outer product based fuzzy neural network fingerprint verification system. Neur Ntwks 2001 14:305–323

    Article  Google Scholar 

  89. National Institute of Standards and Technology (NIST) (2003) Special databases. http://www.nist.gov/data/. Cited October 2003

  90. Maio D, Maltoni D, Cappelli R, Wayman J, Jain A (2002) FVC2000: fingerprint verification competition. IEEE Trans Patt Anal Mach Intell 24(3):402–412

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sergeant Russell Plummer of the New South Wales Police’s Criminal Identification Specialist Support Branch for valuable information and a fascinating discussion on the use of latent fingerprints for criminal investigations in Australia. Furthermore, we thank the anonymous referees for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Yager.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yager, N., Amin, A. Fingerprint verification based on minutiae features: a review. Pattern Anal Applic 7, 94–113 (2004). https://doi.org/10.1007/s10044-003-0201-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-003-0201-2

Keywords

Navigation