Skip to main content
Log in

Content-based image retrieval by using tree-structured features and multi-layer self-organizing map

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

A new approach for content-based image retrieval (CBIR) is described. In this study, a tree-structured image representation together with a multi-layer self-organizing map (MLSOM) is proposed for efficient image retrieval. In the proposed tree-structured image representation, a root node contains the global features, while child nodes contain the local region-based features. This approach hierarchically integrates more information of image contents to achieve better retrieval accuracy compared with global and region features individually. MLSOM in the proposed method provides effective compression and organization of tree-structured image data. This enables the retrieval system to operate at a much faster rate than that of directly comparing query images with all images in databases. The proposed method also adopts a relevance feedback scheme to improve the retrieval accuracy by a respectable level. Our obtained results indicate that the proposed image retrieval system is robust against different types of image alterations. Comparative results corroborate that the proposed CBIR system is promising in terms of accuracy, speed and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Niblack W, Barber R, Equitz W, Flickner M, Glasman E, Petkovic D, Yanker P, Faloutsos C, Taubin G (1993) The QBIC project: querying images by content using color, texture, and shape. In: Proceedings of SPIE storage and retrieval for image and video database, vol 1908, pp 173–87

  2. Ogle V, Stonebraker M (1995) Chabot: retrieval from a relational database of images. IEEE Comput 28(9):40–48

    Google Scholar 

  3. Rubner Y, Guibas LJ, Tomasi C (1997) The earth mover’s distance, Shimulti-dimensional scaling, and color-based image retrieval. In Proceedings of the ARPA image understanding workshop, New Orleans, pp 661–668

  4. Wang JZ, Wiederhold G, Firschein O, Sha XW (1998) Content-based image indexing and searching using Daubechies’ wavelets. Int J Digit Libr 1(4):311–328

    Article  Google Scholar 

  5. Ma WY, Manjunath B, (1997) NaTra: A toolbox for navigating large image databases. In: Proceedings of IEEE international conference on image processing, pp 568–71

  6. Carson C, Thomas M, Belongie S, Hellerstein JM, Malik J, (1999) Blobworld: a system for region-based image indexing and retrieval. In: Proceedings of 3rd international conference on visual information systems. Lecture Notes in Computer Science 1614:509–516

  7. Smith JR, Li CS (1999) Image classification and querying using composite region templates. Comput Vis Image Underst 75(1–2):165–174

    Article  Google Scholar 

  8. Wang JZ, Li J, Wiederhold G (2001) SIMPLIcity: semantics sensitive integrated matching for picture libraries. IEEE Trans Pattern Anal Mach Intell 23:947–963

    Article  Google Scholar 

  9. Gupta A, Jain R (1997) Visual information retrieval. Commun ACM 40(5):70–79

    Article  Google Scholar 

  10. Pass G, Zabih R (1996) Histogram refinement for content-based image. In: Proceedings of the IEEE workshop on applications of computer vision, Sarasota

  11. Huang J, Kumar SR, Mitra M, Zhu WJ, Zabih R (1997) Image indexing using color correlograms. In: Proceedings of the IEEE conference on computer vision and pattern recognition, Puerto Rico

  12. Rao A, Srihari R, Zhang Z (2000) Geometric histogram: a distribution of deometric configuration of color subsets. In: Internet Imaging, Proceedings of SPIE, San Jose, vol 3964, pp 91–101

  13. Cinque L, Ciocca G, Levialdi S, Pellicano A, Schettini R (2001) Color-based image retrieval using spatial-chromatic histograms. Image Vis Comput 19:979–986

    Article  Google Scholar 

  14. Manjunath BS, Ma WY (1996) Texture features for browsing and retrieval of large image data. IEEE Trans Pattern Anal Mach Intell, (Special Issue on Digital Libraries) 18(8):837–842

    Google Scholar 

  15. Stanchev P (2003) Using image mining for image retrieval. In: Proceedings of IASTED, Cancun, Mexico, May 19–21, pp 214–218

  16. Bober M (2001) MPEG-7 visual shape descriptors. IEEE Trans Circuits Sys Video Technol 11(6):716–719

    Article  Google Scholar 

  17. Smith JR, Chang SF (1996) VisualSEEk: a fully automated content-based image query system. In: ACM Multimedia 96, Nov, vol 11, pp 87–98

  18. Li J, Wang JZ, Wiederhold G (2000) IRM: Integrated region matching for image retrieval. In: Proceedings of the ACM Multimedia, pp 147–156

  19. Jing F, Zhang B, Lin F, Ma WY, Zhang HJ (2001) A novel region-based image retrieval method using relevance feedback. In: Proceedings of the 3rd ACM international workshop on multimedia information retrieval, pp 28–31

  20. Sanfeliu A, Alquézar R, Andrade J, Climent J, Serratosa F, Vergés J (2002) Graph-based representations and techniques for image processing and image analysis. Pattern Recognit 35:639–650

    Article  MATH  Google Scholar 

  21. Wu X (1992) Image coding by adaptive tree-structured segmentation. IEEE Trans Inf Theor 38(6):1755–67

    Article  MATH  Google Scholar 

  22. Radha H, Vetterli M, Leonardi R (1996) Image compression using binary space partitioning trees. IEEE Trans Image Process 5(12):1610–24

    Article  Google Scholar 

  23. Salembier P, Garrido L (2000) Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval. IEEE Trans Image Process 9(4):561–76

    Article  Google Scholar 

  24. Cho SY, Chi Z, Siu WC, Tsoi AC (2003) An improved algorithm for learning long-term dependency problem in adaptive processing of data structures. IEEE Trans Neural Netw 14:781–793

    Article  Google Scholar 

  25. Cho SY, Chi Z (2005) Genetic evolution processing of data structures for image classification. IEEE Trans Knowl Data Eng 17(2):216–231

    Article  MathSciNet  Google Scholar 

  26. Kohonen T (1997) Self-organizing maps. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  27. Laaksonen J, Koskela M, Laakso S, Oja E (2000) PicSOM—content-based image retrieval with self-organizing maps. Pattern Recognit Lett 21(13–14):1199–1207

    Article  MATH  Google Scholar 

  28. Wu S, Rahman MKM, Chow TWS (2005) Content-based image retrieval using growing hierarchical self-organizing quadtree map. Pattern Recognit 38(5):707–722

    Article  MATH  Google Scholar 

  29. Wu S, Chow TWS (2004) Clustering of the self-organizing map using a clustering validity index based on inter-cluster and intra-cluster density. Pattern Recognit 37(2):175–188

    Article  MATH  Google Scholar 

  30. Wu S, Chow TWS (2004) Induction machine fault detection: using SOM-based RBF neural networks. IEEE Trans Ind Electron 51(1):183–194

    Article  Google Scholar 

  31. Laaksonen J, Koskela M, Oja E (2002) PicSOM- self-organizing image retrieval with mpeg-7 content descriptors. IEEE Trans Neural Netw 13(4):841–853

    Article  Google Scholar 

  32. Salton G, McGill MJ (1983) Introduction to modern information retrieval. McGraw-Hill, New York

    MATH  Google Scholar 

  33. Deng Y, Manjunath B (2001) Unsupervised segmentation of color-texture regions in images and video. IEEE Trans Pattern Anal Mach Intell 23(8):800–810

    Article  Google Scholar 

  34. Unser M (1995) Texture classification and segmentation using wavelet frames. IEEE Trans Image Process 4(11):1549–1560

    Article  MathSciNet  Google Scholar 

  35. Daubechies I (1992) Ten lectures on wavelets. Capital City Press, Olymbia

    MATH  Google Scholar 

  36. Yam YF, Chow TWS (1995) Accelerated training algorithm for feedforward neural networks based on least-squares method. Neural Process Lett 2(4):20–25

    Article  Google Scholar 

  37. Yam JYF, Chow TWS (1997) Extended least squares based algorithm for training feedforward networks. IEEE Trans Neural Netw 8(3):806–810

    Article  Google Scholar 

Download references

Acknowledgements

This work is fully supported by a grant of project No. 7001599–570 from City University of Hong Kong. We would like to thank James Z. Wang for providing us COREL database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommy W. S. Chow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chow, T.W.S., Rahman, M.K.M. & Wu, S. Content-based image retrieval by using tree-structured features and multi-layer self-organizing map. Pattern Anal Applic 9, 1–20 (2006). https://doi.org/10.1007/s10044-005-0019-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-005-0019-1

Keywords

Navigation