Skip to main content
Log in

Canonical representations of discrete curves

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

A new representation of digital curves is introduced. It has the property of being unique and canonical when computed on closed curves. The representation is based on the discrete notion of tangents and is complete in the sense that it contains all discrete segments and all polygonalizations which can be constructed with connected subsets of the original curve. This representation is extended for dealing with noisy curves and we also propose a multi-scale extension. An application is given to curve decomposition into concave–convex parts and with application in syntactical based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Andrès E (1996) The quasi-shear rotation. In: 6th DGCI, volume 1176 of Lecture Notes in Computer Science, pp 307–314

  2. Arkin E, Chew P, Huttenlocher D, Kedem K, Mitchel J (1991) An efficiently computable metric for comparing polygonal shapes. IEEE Trans Pattern Anal Appl 13(3):209–215

    Article  Google Scholar 

  3. Bribiesca E (1999) A new chain code. Pattern Recognit 32:235–251

    Article  Google Scholar 

  4. Cronin TM (2003) Visualizing concave and convex partitioning of 2d contours. Pattern Recognit Lett 24(1–3):429–443

    Article  Google Scholar 

  5. Van de Merckt T (1993) Decision trees in numerical attribute space. In: 13th international conference on artificial intelligence, Morgan Kaufmann, pp 1016–1021

  6. Debled I, Reveillès JP (1994) A linear algorithm for segmentation of digital curves.In: 3rd IWPIA

  7. Debled-Rennesson I, Remy JL, Rouyer J (2003) Segmentation of discrete curves into fuzzy segments. In: 9th international workshop on combinatorial image analysis, vol 12 of Electronic Notes in Discrete Mathathematics, Palermo, Italy

  8. Dorst L, Smeulders AWM (1984) Discrete representation of straight lines. IEEE PAMI 6:450–463

    Google Scholar 

  9. Fayyad UM, Irani K (1993) Multiple-interval discretization of continuous-valued attributes in induction graphs. In: 13th international conference on artificial intelligence, Morgan Kaufmann, pp 1022–1027

  10. Freeman H (1961) On the encoding of arbitrary geometric configurations. IEEE Trans Elec Comput EC-10:260–268

    Google Scholar 

  11. Hardy GH, Wright EM (1960) An introduction to the theory of numbers, 4th edn. Oxford University Press, New York

    Google Scholar 

  12. Huxley MN (1996) Area, lattice points and exponential sums. Number 13 in London Mathematical Society Monographs. Oxford Science Publications, Oxford

  13. Jarnik v (1925) Über die Gitterpunkte auf konvexen Kurven. Math Zeitschrift 24:500–518

    Article  Google Scholar 

  14. Kerber R (1992) Discretization of numeric attributes. In: Kerber R (ed) Tenth National conference on artificial intelligence. MIT Press, Cambridge, pp 123–128

  15. Latecki LJ, Conrad C, Gross A (1998) Preserving topology by a digitization process. J Math Imaging Vis 8:131–159

    Article  Google Scholar 

  16. Latecki LJ, Lakämper R (1999) Convexity rule for shape decomposition based on discrete contour evolution. Comput Vis IU 73(3):441–454

    Google Scholar 

  17. Latecki LJ, Lakämper R (2000) Shape similarity measure based on correspondance of visual parts. IEEE PAMI 22(10):1185–1190

    Google Scholar 

  18. Latecki LJ, Rosenfeld A (1998) Supportedness and tameness: differentialles geometry of plane curves. Pattern Recognit 31:607–622

    Article  Google Scholar 

  19. Mokhtarian F, Abbasi S (2002) Shape similarity retrieval under affine transforms. Pattern Recognit 35(1):31–41

    Article  Google Scholar 

  20. Reveillès JP (1991) Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d’etat, Université Louis Pasteur, Strasbourg

  21. Rosenfeld A (1974) Digital straight line segments. IEEE Trans Comput 23:1264–1269

    Google Scholar 

  22. Rosenfled A, Klette R (2004) Digital Straightness—a review. Discrete Appl Math 139(1–3):197–230

    Article  Google Scholar 

  23. Rosin E (2000) Shape partitioning by convexity. IEEE Trans Syst Man Cybern A 30(2):202–210

    Article  Google Scholar 

  24. Schrijver A (2003) Combinatorial optimization—polyhedra and efficiency. Springer, Berlin Heidelberg New York

    Google Scholar 

  25. Smeulders AWM, Dorst L (1991) Decomposition of discrete curves into piecewise straight segments in linear time. Contemp Math 119:169–195

    Google Scholar 

  26. Vialard A (1996) Geometrical parameters extraction from discrete paths. In: 6th international workshop DGCI, volume 1176 of Lecture Notes in Computer Science, Springer, Berlin Heidelberg New York, pp 24–35

  27. Zighed DA et al (1999) Encyclopedia of computer science and technology, vol 40, chapter discretization methods in supervised learning. Marcel Dekker, pp 35–50

Download references

Acknowledgements

We thank Jacques Olivier Lachaud for the flower function and the anonymous referees whose comments greatly improved a previous version of the paper. Special thanks to F. Mokhtarian for making the SQUID database freely available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Feschet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feschet, F. Canonical representations of discrete curves. Pattern Anal Applic 8, 84–94 (2005). https://doi.org/10.1007/s10044-005-0246-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-005-0246-5

Keywords

Navigation