Skip to main content
Log in

A new hybrid method for gene selection

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Gene selection is a significant preprocessing of the discriminant analysis of microarray data. The classical gene selection methods can be classified into three categories: the filters, the wrappers and the embedded methods. In this paper, a novel hybrid gene selection method (HGSM) is proposed by exploring both the mutual information criterion (filters) and leave-one-out-error criterion (wrappers) under the framework of an improved ant algorithm. Extensive experiments are conducted on three benchmark datasets and the results confirm the effectiveness and efficiency of HGSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Golub TR et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439):531–537

    Article  Google Scholar 

  2. Nutt CL et al (2003) Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res 63(7):1602–1607

    Google Scholar 

  3. Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1–2):273–324

    Article  MATH  Google Scholar 

  4. Cherkassky VS, Mulier F (1998) Learning from data: concepts, theory, and methods. Wiley, New York

  5. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    Article  MATH  Google Scholar 

  6. Chang CF, Wai KM, Patterton HG (2004) Calculating the statistical significance of physical clusters of co-regulated genes in the genome: the role of chromatin in domain-wide gene regulation. Nucleic Acids Res 32(5):1798–1807

    Article  Google Scholar 

  7. Reiner A, Yekutieli D, Benjamini Y (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19(3):368–375

    Article  Google Scholar 

  8. Tang EK, Suganthan PN, Yao X (2006) Gene selection algorithms for microarray data-based on least squares support vector machine. BMC Bioinforma 7:85

    Article  Google Scholar 

  9. Zhou X, Mao KZ (2005) LS Bound based gene selection for DNA microarray data. Bioinformatics 21(8):1559–1564

    Article  Google Scholar 

  10. Chuang LY et al (2008) Improved binary PSO for feature selection using gene expression data. Elsevier, pp 29–37

  11. Ooi CH, Tan P (2003) Genetic algorithms applied to multi-class prediction for the analysis of gene expression data. Bioinformatics 19(1):37–44

    Article  Google Scholar 

  12. Guyon I et al (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422

    Article  MATH  Google Scholar 

  13. Furlanello C et al (2003) Entropy-based gene ranking without selection bias for the predictive classification of microarray data. BMC Bioinforma 4:54

    Article  Google Scholar 

  14. Ding YY, Wilkins D (2006) Improving the performance of SVM-RFE to select genes in microarray data. BMC Bioinforma 7(Suppl 2):S12

    Article  Google Scholar 

  15. Robbins KR et al (2007) The ant colony algorithm for feature selection in high-dimension gene expression data for disease classification. Math Med Biol 24(4):413–426

    Article  MATH  Google Scholar 

  16. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley

  17. Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66

    Article  Google Scholar 

  18. Allinen M et al (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6(1):17–32

    Article  Google Scholar 

  19. Alon U et al (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 96(12):6745–6750

    Article  Google Scholar 

  20. Dudoit S, Fridlyand J, Speed TP (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 97(457):77–87

    Article  MATH  MathSciNet  Google Scholar 

  21. Ambroise C, McLachlan GJ (2002) Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci USA 99(10):6562–6566

    Article  MATH  Google Scholar 

  22. http://www.csie.ntu.edu.tw/~cjlin/libsvm/. [cited

  23. Kelly L, Clark J, Gilliland DG (2002) Comprehensive genotypic analysis of leukemia: clinical and therapeutic implications. Curr Opin Oncol 14(1):10–18

    Article  Google Scholar 

  24. LeBien TW, McCormack RT (1989) The common acute lymphoblastic leukemia antigen (CD10)—emancipation from a functional enigma. Blood 73(3):625–635

    Google Scholar 

  25. Raaijmakers M (2007) ATP-binding-cassette transporters in hematopoietic stem cells and their utility as therapeutical targets in acute and chronic myeloid leukemia. Leukemia 21(10):2094–2102

    Article  Google Scholar 

  26. Wong ETL et al (1999) Changes in chromatin organization at the neutrophil elastase locus associated with myeloid cell differentiation. Blood 94(11):3730

    Google Scholar 

  27. Secchiero P et al (2005) Potential pathogenetic implications of cyclooxygenase-2 overexpression in B chronic lymphoid leukemia cells. Am J Pathol 167(6):1599–1607

    Google Scholar 

  28. Debernardi S et al (2003) Genome-wide analysis of acute myeloid leukemia with normal karyotype reveals a unique pattern of homeobox gene expression distinct from those with translocation-mediated fusion events. Genes Chromosom Cancer 37(2):149–158

    Article  Google Scholar 

Download references

Acknowledgments

This work is partial supported by National Natural Science Foundation of China (60873078), Key Natural Science Foundation of Guangdong Province (9251009001000005, 9151600301000001), Key Technology Research and Development Programs of Guangdong Province (2008B080701005, 2009B010800026), Social Science Foundation of Guangdong Province (08O-01), Open Foundation of the State Key Laboratory of Information Security (04-01), Technology Research and Development Program of Huizhou (08-117), Doctoral Program of the Ministry of Education (20090172120035), and the Fundamental Research Funds for the Central Universities, SCUT(2009ZM0052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruichu Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, R., Hao, Z., Yang, X. et al. A new hybrid method for gene selection. Pattern Anal Applic 14, 1–8 (2011). https://doi.org/10.1007/s10044-010-0180-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-010-0180-z

Keywords

Navigation