Skip to main content
Log in

Statistical thresholding method for infrared images

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Conventional statistical thresholding methods use class variance sum as criterions for threshold selection. These approaches neglect specific characteristic of practical images and fail to obtain satisfactory results when segmenting some images with similar statistical distributions in the object and background. To eliminate the limitation, a novel statistical criterion is defined by utilizing standard deviations of two thresholded classes, and the optimal threshold is determined by optimizing the criterion. The proposed method was compared with several classic thresholding counterparts on a variety of infrared images as well as general real-world ones, and the experimental results demonstrate its superiority.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yin PY (2000) Maximum entropy-based optimal threshold selection using deterministic reinforcement learning with controlled randomization. Signal Process 82(7):993–1006

    Article  Google Scholar 

  2. Bhattacharyya S, Dutta P, Maulik U (2007) Binary object extraction using bi-directional self-organizing neural network (BDSONN) architecture with fuzzy context sensitive thresholding. Pattern Anal Appl 10:345–360

    Article  MathSciNet  Google Scholar 

  3. Sund T, Eilertsen K (2003) An algorithm for fast adaptive image binarization with applications in radiotherapy imaging. IEEE Trans Med Imaging 22(1):22–28

    Article  Google Scholar 

  4. Solihin Y, Leeham CG (1999) Integral ratio: a new class of global thresholding techniques for handwriting images. IEEE Trans Pattern Anal Mach Intell 21(8):761–768

    Article  Google Scholar 

  5. Bruzzone L, Prieto DF (2000) Automatic analysis of the difference image for unsupervised change detection. IEEE Trans Geosci Remote Sens 38(3):1171–1182

    Article  Google Scholar 

  6. Bazi Y, Bruzzone L, Melgani F (2007) Image thresholding based on the EM algorithm and the generalized Gaussian distribution. Pattern Recognit 40(2):619–634

    Article  MATH  Google Scholar 

  7. Nakib A, Oulhadj H, Siarry P (2009) Fractional differentiation and non-Pareto multiobjective optimization for image thresholding. Eng Appl Artif Intell 22(2):236–249

    Article  Google Scholar 

  8. Sahoo PK, Arora G (2004) A thresholding method based on two-dimensional Renyi’s entropy. Pattern Recognit 37(6):1149–1161

    Article  MATH  Google Scholar 

  9. Tsai WH (1985) Moment-preserving thresholding: a new approach. Comput Vis Graphics Image Process 29(3):377–393

    Article  Google Scholar 

  10. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  MathSciNet  Google Scholar 

  11. Hou Z, Hu Q, Nowinski WL (2006) On minimum variance thresholding. Pattern Recognit Lett 27(14):1732–1743

    Article  Google Scholar 

  12. Pun T (1980) A new method for grey-level picture thresholding using the entropy of histogram. Signal Process 2(3):223–227

    Article  Google Scholar 

  13. Kapur JN, Sahoo PK, Wong AKC (1985) A new method for grey-level picture thresholding using the entropy of the histogram. Comput Vis Graphics Image Process 29(3):273–285

    Article  Google Scholar 

  14. Kwon SH (2004) Threshold selection based on cluster analysis. Pattern Recognit Lett 25(9):1045–1050

    Article  Google Scholar 

  15. Sahoo PK, Soltani S, Wong AKC (1988) A survey of thresholding techniques. Comput Vis Graphics Image Process 41(2):233–260

    Article  Google Scholar 

  16. Ramesh N, Yoo JH, Sethi IK (1995) Thresholding based on histogram approximation. IEE Proc Vis Image Signal Process 142(5):271–279

    Article  Google Scholar 

  17. Wang S, Chung F, Xiong F (2008) A novel image thresholding method based on Parzen window estimate. Pattern Recognit 41(1):117–129

    Article  MATH  Google Scholar 

  18. Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13(1):146–165

    Article  Google Scholar 

  19. Mohar B (1989) Isoperimetric numbers of graphs. J Comb Theory Ser B 47:274–291

    Article  MathSciNet  MATH  Google Scholar 

  20. Dodziuk J (1984) Difference equations, isoperimetric inequality and the transience of certain random walks. Trans Am Math Soc 284:787–794

    Article  MathSciNet  MATH  Google Scholar 

  21. Grady L, Schwartz EL (2006) Isoperimetric graph partitioning for image segmentation. IEEE Trans Pattern Anal Mach Intell 28:469–475

    Article  Google Scholar 

  22. Yasnoff WA, Mui JK, Bacus JW (1977) Error measures for scene segmentation. Pattern Recognit 9(4):217–231

    Article  Google Scholar 

  23. Hu Q, Hou Z, Nowinski WL (2006) Supervised range-constrained thresholding. IEEE Trans Image Process 15(1):228–240

    Article  Google Scholar 

  24. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant Nos. 60472061, 60632050, 90820004, 60875010), National 863 Project (Grant Nos. 2006AA04Z238, 2006AA01Z119), Technology Project of provincial university of Fujian Province (2008F5045, 2007F5083), Technology Startup Project of Minjiang University (YKQ07001) and Nanjing Institute of Technology Internal Fund (KXJ06037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuoyong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Liu, C., Liu, G. et al. Statistical thresholding method for infrared images. Pattern Anal Applic 14, 109–126 (2011). https://doi.org/10.1007/s10044-010-0184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-010-0184-8

Keywords

Navigation