Skip to main content

Advertisement

Log in

Robust document binarization with OFF center-surround cells

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

This paper presents a new method for degraded-document binarization, inspired by the attributes of the Human Visual System (HVS). It can deal with various types of degradations, such as uneven illumination, shadows, low contrast, smears, and heavy noise densities. The proposed algorithm combines the characteristics of the OFF center-surround cells of the HVS with the classic Otsu binarization technique. Cells of two different scales are combined, increasing the efficiency of the algorithm and reducing the extracted noise in the final output. A new response function, which regulates the output of the cell according to the local contrast and the local lighting conditions is also introduced. The Otsu technique is used to binarize the outputs of the OFF center-surround cells. Quantitative experiments performed on a set of various computer-generated degradations, such as noise, shadow, and low contrast demonstrate the superior performance of the proposed method against six other well-established techniques. Qualitative and OCR comparisons also confirm these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Otsu N (1979) A thresholding selection method from gray-scale histogram. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  2. Deravi F, Pal SK (1983) Gray level thresholding using second order statistics. Pattern Recogn Lett 1:417–422

    Article  Google Scholar 

  3. Kapur JN, Sahoo PK, Wong AKC (1985) A new method for graylevel picture thresholding using the entropy of the histogram. Comput Vis Graph 29:273–285

    Article  Google Scholar 

  4. Sahoo PK, Soltani S, Wong AKC (1988) A survey of thresholding techniques. Comput Vis Graph 41:233–260

    Article  Google Scholar 

  5. Lee SU, Chung SY (1990) A comparative performance study of several global thresholding techniques for segmentation. Comput Vis Graph 52:171–190

    Article  Google Scholar 

  6. Liu Y, Srihari SN (1997) Document image binarization based on texture features. IEEE Trans Pattern Anal Mach Intell 19(5):540–544

    Article  Google Scholar 

  7. Cheriet M, Said JN, Suen CY (1998) A recursive thresholding technique for image segmentation. IEEE Trans Image Proc 7(6):918–921

    Article  Google Scholar 

  8. Solihin Y, Leedham CG (1999) Integral ratio: a new class of global thresholding techniques for handwriting images. IEEE Trans Pattern Anal Mach Intell 21(8):761–768

    Article  Google Scholar 

  9. Niblack W (1986) An introduction to digital image processing. Prentice Hall, New Jersey, pp 115–116

    Google Scholar 

  10. Mardia KV, Hainsworth TJ (1988) A spatial thresholding method for image segmentation. IEEE Trans Pattern Anal Mach Intell 10(6):919–927

    Article  Google Scholar 

  11. Taxt T, Flynn PJ, Jain AK (1989) Segmentation of document images. IEEE Trans Pattern Anal Mach Intell 11(12):1322–1329

    Article  Google Scholar 

  12. Parker JR (1991) Gray level thresholding in badly illuminated images. IEEE Trans Pattern Anal Mach Intell 13(8):813–819

    Article  Google Scholar 

  13. Trier ØD, Jain AK (1995) Goal-directed evaluation of binarization method. IEEE Trans Pattern Anal 17(12):1191–1201

    Article  Google Scholar 

  14. Sauvola J, Pietikainen M (2000) Adaptive document image binarization. Pattern Recogn 33(2):225–236

    Article  Google Scholar 

  15. Yang Y, Yan H (2000) An adaptive logical method for binarization of degraded document images. Pattern Recogn 33:787–807

    Article  Google Scholar 

  16. Ye X, Cheriet M, Suen CY (2001) Stroke–model–based character extraction from gray-level document images. IEEE Trans Image Process 10:1152–1161

    Article  MathSciNet  MATH  Google Scholar 

  17. Tsai CM, Lee HJ (2002) Binarization of color document images via luminance and saturation color features. IEEE Trans Image Process 11(4):434–451

    Article  Google Scholar 

  18. Kim IK, Jung DW, Park RH (2002) Document image binarization based on topographic analysis using a water flow model. Pattern Recogn 35:265–277

    Article  MATH  Google Scholar 

  19. Papamarkos N (2003) Document gray-scale reduction using a neuro-fuzzy technique. Int J Pattern Recognit Artif Intell 17(4):505–527

    Article  Google Scholar 

  20. Dawoud A, Kamel MS (2004) Iterative multimodel subimage binarization for handwritten character segmentation. IEEE Trans Image Process 13(9):1223–1230

    Article  Google Scholar 

  21. Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electr Imag 13(1):146–165

    Article  Google Scholar 

  22. Oh HH, Limb KT, Chienc SI (2005) An improved binarization algorithm based on a water flow model for document image with inhomogeneous backgrounds. Pattern Recognit 38:2612–2625

    Article  Google Scholar 

  23. Gatos B, Pratikakis I, Perantonis SJ (2006) Adaptive degraded document image binarization. Pattern Recognit 39:317–327

    Article  MATH  Google Scholar 

  24. Badekas E, Papamarkos N (2007) Document binarization using Kohonen SOM. IET Image Process 1(1):67–84

    Article  Google Scholar 

  25. Tseng YH, Lee HJ (2008) Document image binarization by two-stage block extraction and background intensity determination. Pattern Anal Appl 11(1):33–44

    Article  MathSciNet  Google Scholar 

  26. Vonikakis V, Andreadis I, Papamarkos N, Gasteratos A (2007) Adaptive document binarization. Proceedings of VISAPP, Barcelona, pp 104–110

    Google Scholar 

  27. http://www.abbyy.com/finereader_ocr/

  28. Blakeslee B, McCourt M (2003) A multiscale spatial filtering account of brightness phenomena. In: Harris L, Jenkin M (eds) Levels of perception. Springer, Berlin, pp 47–72

  29. Nelson R, Kolb H (2004) ON and OFF pathways in the vertebrate retina and visual system. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT Press, Cambridge, pp 260–278

  30. Fiorentini A (2004) Brightness and lightness. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT Press, Cambridge, pp 881–891

  31. Dacey DM, Lee BB (1999) Functional architecture of cone signal pathways in the primate retina. In: Gegenfurtner KR, Sharpe LT (eds) Color vision. Cambridge University Press, Cambridge, pp 181–202

  32. Martin PR, Grunert U (2004) Ganglion cells in mammalian retinae. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT Press, Cambridge, pp 410–421

  33. Grossberg S (2004) Visual Boundaries and Surfaces. In Chalupa LM, Werner JS. The Visual Neurosciences, MIT Press, pp 1624–1639

  34. http://electronics.ee.duth.gr/vonikakis.htm

  35. Gupta MR, Jacobson NP, Garcia EK (2007) OCR binarization and image pre-processing for searching historical documents. Pattern Recognit 40:389–397

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is funded: 75% by the EU, 25% by the Greek GSRT (PENED-03ED17). From private funding: for the 8.3 norm of the European Initiative “Competitiveness”—3rd Community Support Framework.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Vonikakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vonikakis, V., Andreadis, I. & Papamarkos, N. Robust document binarization with OFF center-surround cells. Pattern Anal Applic 14, 219–234 (2011). https://doi.org/10.1007/s10044-011-0214-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-011-0214-1

Keywords

Navigation