Skip to main content
Log in

A texture image denoising approach based on fractional developmental mathematics

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

The traditional integer-order computation-based denoising approaches often blur the edges and textural details of an image. To solve this problem, from the viewpoint of system evolution, and based on the features of fractional calculus, we propose to implement a texture image denoising approach based on fractional developmental mathematics (FDM) which applies a novel mathematical method, fractional calculus, to image denoising. First, we synopsize the necessary theoretical background of fractional calculus. Second, we derive the necessary mathematical models for implementation of a texture image denoising approach based on FDM. We derive fractional Green’s formula, fractional Gauss’ formula, and fractional Stokes’ formula, and fractional Euler–Lagrange equation. Then, a texture image denoising approach based on FDM is proposed. Third, we implement comparative experiments. We firstly derive the numerical implementation of FDM. Then, we study the capability of preserving the edges and textural details of FDM by comparative experiments. The comparative experimental results show that the capability of preserving the edges and textural details of the FDM-based denoising algorithm is obviously superior to that of traditional integer-order computation-based algorithms, especially for texture detail rich images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Chan, S. Esedoglu, F. Park, et al. (2005) Recent Developments in Total Variation Image Restoration, in Mathematical Models of Computer Vision, Springer Verlag

  2. Buades A, Coll B, Morel JM (2005) A review of image denoising algorithms, with a new one. Multiscale Model. Simul 4(2):490–530

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubert G, Kornprobst P (2006) Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, Applied Mathematical Sciences. Springer-Verlag, New York, p 147

    MATH  Google Scholar 

  4. Perona P, Malik J (1990) Scale-space and edges detecting using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639

    Article  Google Scholar 

  5. Rudin L, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D 60:259–268

    Article  MathSciNet  MATH  Google Scholar 

  6. Sapiro G, Ringach D (1996) Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans Image Process 5(11):1582–1586

    Article  MATH  Google Scholar 

  7. Blomgren P, Chan T (1998) Color TV: total variation methods for restoration of vector-valued images. IEEE Trans Image Process 7(3):304–309

    Article  Google Scholar 

  8. Li SZ (1998) Clost-form solution and parameter selection for convex minimization-based edges-preserving smoothing. IEEE Trans Pattern Anal Mach Intell 20(9):916–932

    Article  Google Scholar 

  9. Nguyen N, Milanfar P, Golub G (2001) Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement. IEEE Trans Image Process 10(9):1299–1308

    Article  MathSciNet  MATH  Google Scholar 

  10. Strong DM, Aujol JF, Chan TF (2006) Scale recognition, regularization parameter selection, and meyer’s g norm in total variation regularization. Multiscale Model. Simul. 5(1):273–303

    Article  MathSciNet  MATH  Google Scholar 

  11. Gilboa G, Sochen N, Zeevi YY (2006) Estimation of optimal PDE-based denoising in the SNR sense. IEEE Trans Image Process 15(8):2269–2280

    Article  Google Scholar 

  12. Vogel CR, Oman ME (1996) Iterative methods for total variation denoising. SIAM J Sci Comput 17(1):227–238

    Article  MathSciNet  MATH  Google Scholar 

  13. Dobson DC, Vogel CR (1997) Convergence of an iterative method for total variation denoising. SIAM J Number Anal 34(5):1779–1791

    Article  MathSciNet  MATH  Google Scholar 

  14. Chambolle A (2004) An algorithm for total variation minimization and applications. J Math Imaging Vis 20(1–2):89–97

    MathSciNet  Google Scholar 

  15. Darbon J, Sigelle M (2006) Image restoration with discrete constrained total variation part i: fast and exact optimization. J Math Imaging Vis 26(3):261–276

    Article  MathSciNet  Google Scholar 

  16. Darbon J, Sigelle M (2006) Image restoration with discrete constrained total variation part ii: levelable functions, convex priors and non-convex cases. J Math Imaging Vis 26(3):277–291

    Article  MathSciNet  Google Scholar 

  17. Catte F, Lions PL, Morel JM et al (1992) Image selective smoothing and edges detection by nonlinear diffusion. SIAM J Number Anal 29(1):182–193

    Article  MathSciNet  MATH  Google Scholar 

  18. Meyer Y (2001) Oscillating patterns in image processing and in some nonlinear evolution equations. American Mathematical Society, Providence, RI

  19. Nikolova M (2004) A variational approach to remove outliers and impulse noise. J Math Imaging Vis 20(12):99–120

    Article  MathSciNet  Google Scholar 

  20. Nikolova M (2002) Minimizers of cost-functions involving nonsmooth data-fidelity terms. SIAM J Number Anal 40(3):965–994

    Article  MathSciNet  MATH  Google Scholar 

  21. Osher S, Burger M, Goldfarb D et al (2005) An iterative regularization method for total variation based on image restoration. Multiscale Model. Simul 4(2):460–489

    Article  MathSciNet  MATH  Google Scholar 

  22. Gilboa G, Zeevi YY, Sochen N (2003) Texture preserving variational denoising using an adaptive fidelity term. In: Proc. VLSM, Nice, France, pp 137–144

  23. Esedoglu S, Osher S (2004) Decomposition of images by the anisotropic rudin-osher-fatemi model. Comm Pure Appl Math 57(12):1609–1626

    Article  MathSciNet  MATH  Google Scholar 

  24. Plomgren P, Mulet P, Chan T et al (1997) Total variation image restoration: numerical methods and extensions. In: ICIP, Santa Barbara, pp 384–387

  25. Zhang H, Yang J, Zhang Y, Huang T (2013) Image and video restorations via nonlocal kernel regression. IEEE Trans Cybernetics 43(3):1035–1046

    Article  Google Scholar 

  26. Dong W, Zhang L, Shi G, Wu X (2011) Image deblurring and superresolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans Image Process 20(7):1838–1857

    Article  MathSciNet  Google Scholar 

  27. Elad M, Aharon M (2006) Image denoising via Sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745

    Article  MathSciNet  Google Scholar 

  28. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. on Image Processing 16(8):2080–2095

    Article  MathSciNet  Google Scholar 

  29. Dong W, Zhang L, Shi G, Li X (2013) Nonlocally centralized sparse representation for image restoration. IEEE Trans Image Processing 22(4):1620–1630

    Article  MathSciNet  Google Scholar 

  30. Love ER (1971) Fractional Derivatives of Imaginary Order. J. London Math Soc 3:241–259

    Article  MathSciNet  MATH  Google Scholar 

  31. Oldham KB, Spanier. (1974) The fractional calculus: integrations and differentiations of arbitrary order. Academic Press, New York

    MATH  Google Scholar 

  32. Manabe S (2002) A suggestion of fractional-order controller for flexible spacecraft attitude control. Nonlinear Dyn 29:251–268

    Article  MATH  Google Scholar 

  33. Chen W, Holm S (2004) fractional laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency dependency. J Acoustic Soc Am 115(4):1424–1430

    Article  MathSciNet  Google Scholar 

  34. Perrin E, Harba R, Berzin-Joseph C, Iribarren I, Bonami A (2001) Nth-order fractional brownian motion and fractional gaussian noises. IEEE Trans Signal Processing 49(5):1049–1059

    Article  Google Scholar 

  35. Tseng CC (2001) Design of fractional-order digital FIR differentiators. IEEE Signal Process Lett 8(3):77–79

    Article  Google Scholar 

  36. Chen YQ, Vinagre BM (2003) A New IIR-Type digital fractional-order differentiator, Elsevier Science, pp 1–12

  37. Pu YF. (2006) Research on application of fractional calculus to latest signal analysis and processing. Ph.D. Dissertation, Sichuan University, Chengdu China

  38. Pu YF, Yuan X, Liao K et al (2005) Five numerical algorithms of fractional calculus applied in modern signal analyzing and processing. J. Sichuan University Engi Sci Edition 37(5):118–124

    Google Scholar 

  39. Pu YF, Yuan X, Liao K et al (2005) Structuring analog fractance circuit for 1/2 order fractional calculus. In: IEEE Proceedings of 6th International Conference on ASIC, pp 1039–1042

  40. Pu YF, Yuan X, Liao K et al (2006) Implement any fractional-order neural-type pulse oscillator with net-grid type analog fractance circuit. J. Sichuan University Eng Sci Edition 38(1):128–132

    Google Scholar 

  41. Didas S, Burgeth B, Imiya A et al (2005) Regularity and Scale space properties of fractional high order linear filtering, scale spaces PDE Meth. Comput Vis 3459:13–25

    MATH  Google Scholar 

  42. Pu YF, Zhou JL, Zhang Y, Zhang N, Huang G, Siarry P (2013) Fractional extreme value adaptive training method: fractional steepest descent approach. In: IEEE Trans. Neural Networks and Learning Systems, to be published. Available: http://www.ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6650068&url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D6650068

  43. Mathieu B, Melchior P, Oustaloup A et al (2003) Fractional differentiation for edges detection. Sig Process 83:2421–2432

    Article  MATH  Google Scholar 

  44. Liu SC, Chang S (1997) Dimension estimation of discrete-time fractional brownian motion with applications to image texture classification. IEEE Trans on Image Processing 6(8):1176–1184

    Article  Google Scholar 

  45. Pu YF (2006) Fractional calculus approach to texture of digital image. In: IEEE Proceedings of 8th International Conference on Signal Processing, pp 1002–1006

  46. Pu YF, Wang WX, ZHOU JL et al (2008) Fractional differential approach to detecting textural features of digital image and its fractional differential filter implementation. Sci China Ser F Inform Sci 38(12):2252–2272

    MathSciNet  MATH  Google Scholar 

  47. Pu YF, Zhou JL (2011) A novel approach for multi-scale texture segmentation based on fractional differential. Int J Comp Math 88(1):58–78

    Article  MathSciNet  MATH  Google Scholar 

  48. Pu YF, Zhou JL, Yuan X (2010) Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement. IEEE Trans Image Process 19(2):491–511

    Article  MathSciNet  Google Scholar 

  49. Bai J, Feng XC (2007) Fractional-Order anisotropic diffusion for image denoising. IEEE Trans Image Process 16(10):2492–2502

    Article  MathSciNet  Google Scholar 

  50. Pu YF, Siarry P, Zhou JL, Liu YG, Zhang N, Huang G et al (2014) Fractional partial differential equation denoising models for texture image. Sci China Ser F Inform Sci 57(7):1–19

    Article  MathSciNet  MATH  Google Scholar 

  51. Pu YF, Siarry P, Zhou JL, Zhang N (2014) A fractional partial differential equation based multi-scale denoising model for texture image. Math Methods Appl Sci 37(12):1784–1806

    Article  MathSciNet  MATH  Google Scholar 

  52. Tarasov VE (2008) Fractional vector calculus and fractional Maxwell’s equations. Ann Phys 323(11):2756–2778

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error measurement to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Fei Pu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, YF., Zhang, N., Zhang, Y. et al. A texture image denoising approach based on fractional developmental mathematics. Pattern Anal Applic 19, 427–445 (2016). https://doi.org/10.1007/s10044-015-0477-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-015-0477-z

Keywords

Navigation