Skip to main content
Log in

A novel colour- and texture-based image retrieval technique using multi-resolution local extrema peak valley pattern and RGB colour histogram

  • Industrial and Commercial Application
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Image retrieval means extraction of desired image from a large image database. Nowadays, image searching and retrieval have become a very challenging and essential task in real-life world due to huge increment of digital images. Therefore, content-based image retrieval becomes a very popular and well-known research topic. In this paper, a novel image retrieval technique has been proposed using fusion of colour and texture features. To extract texture feature, two-level discrete wavelet transform is applied on input image. It helps to enhance the common features of the given image. Then, local extrema peak valley pattern (LEPVP), an extension of local extrema pattern, is applied on obtained wavelet coefficients to collect local directional information. For colour feature, RGB colour histogram of the original image is constructed. The colour histogram is concatenated with the histogram achieved from LEPVP operator to get the final feature descriptor. The effectiveness of the suggested technique is evaluated using five different benchmark databases. Among these, three are coloured natural image databases (Corel-1k, Corel-5k, Corel-10k) and two are coloured texture image databases (STex, MIT VisTex). From the performance analysis, it is clear that the presented algorithm outperforms the previous existing methods in terms of precision and recall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Sifuzzaman M, Islam MR, Ali MZ (2009) Application of wavelet transform and its advantages compared to Fourier transform. J Phys Sci 13:121–134

    Google Scholar 

  2. Balmelli L, Mojsilovic A (1999) Wavelet domain features for texture description, classification and replicability analysis. Proceed IEEE Int Confer Image Process (ICIP) 4:440–444

    Google Scholar 

  3. Ardizzoni S, Bartolini I, Patella M (1999) Windsurf: region-based image retrieval using wavelets. In: Proceedings of 10th IEEE international workshop on database and expert systems applications, pp 167–173

  4. Wang JZ, Wiederhold G, Firschein O, Wei SX (1998) Content-based image indexing and searching using daubechies’ wavelets. Int J Digit Libr 1(4):311–328

    Article  Google Scholar 

  5. Moghaddam HA, Khajoie TT, Rouhi AH, Saadatmand-Tarzjan M (2005) Wavelet correlogram: a new approach for image indexing and retrieval. Pattern Recogn 38(12):2506–2518

    Article  Google Scholar 

  6. Manjunathi BS, Ma WY (1996) Texture features for browsing and retrieval of image data. Patt Anal Mach Intell IEEE Trans 18(8):837–842

    Article  Google Scholar 

  7. Ahmadian A, Mostafa A (2003) An efficient texture classification algorithm using Gabor wavelet. In: Proceedings of 25th IEEE annual international conference on engineering in medicine and biology society 1:930–933

  8. Moghaddam HA, Saadatmand-Tarzjan M (2006) Gabor wavelet correlogram algorithm for image indexing and retrieval. In: Proceedings of IEEE 18th international conference on pattern recognition (ICPR) 2:925–928

  9. Kokare M, Biswas PK, Chatterji BN (2007) Texture image retrieval using rotated wavelet filters. Pattern Recogn Lett 28(10):1240–1249

    Article  Google Scholar 

  10. Celik T, Tjahjadi T (2009) Multiscale texture classification using dual-tree complex wavelet transform. Pattern Recogn Lett 30(3):331–339

    Article  Google Scholar 

  11. Kokare M, Biswas PK, Chatterji BN (2005) Texture image retrieval using new rotated complex wavelet filters. Syst Man Cybern B Cybern IEEE Trans 35(6):1168–1178

    Article  Google Scholar 

  12. Ojala T, Pietikainen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recogn 29(1):51–59

    Article  Google Scholar 

  13. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Patt Anal Mach Intell IEEE Trans 24(7):971–987

    Article  MATH  Google Scholar 

  14. Takala V, Ahonen T, Pietikäinen M (2005) Block-based methods for image retrieval using local binary patterns. Image Anal, pp 882–891

  15. Heikkilä M, Pietikäinen M, Schmid C (2006) Description of interest regions with center-symmetric local binary patterns. Comp Vision Graph Image Process pp 58–69

  16. Liao S, Law MWK, Chung ACS (2009) Dominant local binary patterns for texture classification. Image Processing, IEEE Transactions on 18(5):1107–1118

    Article  MathSciNet  Google Scholar 

  17. Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. Image Processing, IEEE Transactions on 19(6):1657–1663

    Article  MathSciNet  Google Scholar 

  18. He Y, Sang N, Gao C (2013) Multi-structure local binary patterns for texture classification. Pattern Anal Appl 16(4):595–607

    Article  MathSciNet  Google Scholar 

  19. Houam L, Hafiane A, Boukrouche A, Lespessailles E, Jennane R (2014) One dimensional local binary pattern for bone texture characterization. Pattern Anal Appl 17(1):179–193

    Article  MathSciNet  Google Scholar 

  20. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. Image Process IEEE Trans 19(6):1635–1650

    Article  MathSciNet  Google Scholar 

  21. Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative pattern versus local binary pattern: face recognition with higher-order local pattern descriptor. Image Process IEEE Trans 19(2):533–544

    Article  MathSciNet  Google Scholar 

  22. Yao CH, Chen SY (2003) Retrieval of translated, rotated and scaled color textures. Pattern Recogn 36(4):913–929

    Article  MathSciNet  Google Scholar 

  23. Murala S, Maheshwari RP, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content-based image retrieval. Image Process IEEE Trans 21(5):2874–2886

    Article  MathSciNet  Google Scholar 

  24. Murala S, Maheshwari RP, Balasubramanian R (2012) Directional local extrema patterns: a new descriptor for content based image retrieval. Int J Mult Inform Retr 1(3):191–203

    Article  Google Scholar 

  25. Murala S, Wu QJ (2013) Peak valley edge patterns: a new descriptor for biomedical image indexing and retrieval. Proceedings of IEEE international conference on computer vision and pattern recognition workshops (CVPRW), pp 444–449

  26. Murala S, Wu QJ (2014) Local mesh patterns versus local binary patterns: biomedical image indexing and retrieval. Biomed Health Inform IEEE J 18(3):929–938

    Article  Google Scholar 

  27. Murala S, Wu QJ (2014) MRI and CT image indexing and retrieval using local mesh peak valley edge patterns. Sig Process Image Commun 29(3):400–409

    Article  Google Scholar 

  28. Murala S, Maheshwari RP, Balasubramanian R (2012) Local maximum edge binary patterns: a new descriptor for image retrieval and object tracking. Sig Process 92(6):1467–1479

    Article  Google Scholar 

  29. Zhao G, Pietikainen M (2007) Dynamic texture recognition using local binary patterns with an application to facial expressions. Pattern Anal Mach Intell IEEE Trans 29(6):915–928

    Article  Google Scholar 

  30. Wang Y, Mu ZC, Zeng H (2008) Block-based and multi-resolution methods for ear recognition using wavelet transform and uniform local binary patterns. Proceedings of 19th international conference on pattern recognition (ICPR), pp 1–4

  31. Mohamed AA, Gavrilova ML, Yampolskiy RV (2012) Artificial face recognition using Wavelet adaptive LBP with directional statistical features. Proceedings of international conference on cyberworlds (CW), pp. 23–28

  32. Verma M, Balasubramanian R, Murala S (2014) Multi-resolution Local extrema patterns using discrete wavelet transform. Proceedings of 7th International Conference on Contemporary Computing (IC3), pp 577–582

  33. Swain MJ, Ballard DH (1991) Color indexing. Int J Comput Vision 7(1):11–32

    Article  Google Scholar 

  34. Schaefer G, Stich M (2003) UCID: an uncompressed color image database. Electronic Imaging. International Society for Optics and Photonics pp 472–480

  35. Pass G, Zabih R, J. Miller (1997) Comparing images using color coherence vectors. Proceedings of 4th ACM international conference on multimedia, pp 65–73

  36. Huang J, Kumar SR, Mitra M (1997) Combining supervised learning with color correlograms for content-based image retrieval. Proceedings of the 5th ACM international conference on multimedia, pp 325–334

  37. Chun YD, Kim NC, Jang IH (2008) Content-based image retrieval using multiresolution color and tsexture features. Multi IEEE Trans 10(6):1073–1084

    Article  Google Scholar 

  38. Murala S, Gonde AB, Maheshwari RP (2009) Color and texture features for image indexing and retrieval. Proceedings of international advance computing conference (IACC), pp 1411–1416

  39. Murala S, Wu JQ, Balasubramanian R, Maheshwari RP (2013) Joint histogram between color and local extrema patterns for object tracking. IS&T/SPIE Electronic imaging. international society for optics and photonics, pp 86630T–86630T

  40. Li Z, Liu J, Yang Y, Zhou X, Lu H (2014) Clustering-guided sparse structural learning for unsupervised feature selection. Knowledge and Data Eng IEEE Trans 26(9):2138–2150

    Article  Google Scholar 

  41. Li Z, Liu J, Tang J, Lu H (2015) Robust structured subspace learning for data representation. Pattern Anal Mach Intell IEEE Trans 37(10):2085–2098

    Article  Google Scholar 

  42. Li Z, Liu J, Xu C, Lu H (2013) MLRank: multi-correlation learning to rank for image annotation. Pattern Recogn 46(10):2700–2710

    Article  MATH  Google Scholar 

  43. Verma M, Balasubramanian R, Murala S (2015) Local extrema co-occurrence pattern for color and texture image retrieval. Neurocomputing 165:255–269

  44. Corel 1 k database [online], Available: http://wang.ist.psu.edu/docs/related/

  45. Corel 5k and Corel 10k database [online],Available: http://www.ci.gxnu.edu.cn/cbir/

  46. R. Kwitt, P. Meerwald, Salzburg texture image database, Sep 2012 [online] Available: http://www.wavelab.at/sources/STex/

  47. MIT Vision and Modeling Group, Cambridge, Vision texture, [online], Available: http://vismod.media.mit.edu/pub/

Download references

Acknowledgments

This work was supported by the Ministry of Human Resource and Development (MHRD), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhumanti Dey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, M., Raman, B. & Verma, M. A novel colour- and texture-based image retrieval technique using multi-resolution local extrema peak valley pattern and RGB colour histogram. Pattern Anal Applic 19, 1159–1179 (2016). https://doi.org/10.1007/s10044-015-0522-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-015-0522-y

Keywords

Navigation