Skip to main content
Log in

Local appearance modeling for objects class recognition

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

In this work, we propose a new formulation of the objects modeling combining geometry and appearance; it is useful for detection and recognition. The object local appearance location is referenced with respect to an invariant which is a geometric landmark. The appearance (shape and texture) is a combination of Harris–Laplace descriptor and local binary pattern (LBP), all being described by the invariant local appearance model (ILAM). We use an improved variant of LBP traits at regions located by Harris–Laplace detector to encode local appearance. We applied the model to describe and learn object appearances (e.g., faces) and to recognize them. Given the extracted visual traits from a test image, ILAM model is carried out to predict the most similar features to the facial appearance: first, by estimating the highest facial probability and then in terms of LBP histogram-based measure, by computing the texture similarity. Finally, by a geometric calculation the invariant allows to locate an appearance in the image. We evaluate the model by testing it on different face images databases. The experiments show that the model results in high accuracy of detection and provides an acceptable tolerance to the appearance variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Burns J, Weiss R, Riseman E (1993) View variation of point set and line-segment features. PAMI 15(1):51–68

    Article  Google Scholar 

  2. Dorko G, Schmid C (2003) Selection of scale-invariant parts for object class recognition. In: ICCV, pp 634–640

  3. Agarwal S, Awan A, Roth D (2004) Learning to detect objects in images via a sparse, part-based representation. PAMI 26(11):1475–1490

    Article  Google Scholar 

  4. Fei-Fei L, Fergus R, Perona P (2003) A Bayesian approach to unsupervised one-shot learning of object categories. ICCV. Nice, France, pp 1134–1141

    Google Scholar 

  5. Hadid A, Pietikäinen M, Ahonen T (2004) A discriminative feature space for detecting and recognizing faces. In: Computer vision and pattern recognition (CVPR), proceedings of the IEEE computer society conference, vol 2, pp 797–804

  6. Ojala T, Pietikäinen M, Mäenpää T (2002) Multi-resolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell (PAMI) 24:971–987

    Article  MATH  Google Scholar 

  7. Taffar M, Miguet S (2017) Face class modeling based on local appearance for recognition. In: 6th international conference on pattern recognition applications and methods (ICPRAM’17), Porto, Portugal

  8. Visual Object Classes database (2012) Pattern analysis, statistical modelling and computational learning (PASCAL) visual object classes challenge. http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

  9. Color FERET Face Database (2009). www.itl.nist.gov/iad/humanid/colorferet

  10. CMU Face Group and Face Detection Project (2009) Frontal and profile face images databases. http://vasc.ri.cmu.edu/idb/html/face/

  11. CMU-PIE Database, CMU Pose, illumination, and expression (PIE) database. http://www.ri.cmu.edu/projects/project_418.html

  12. AT&T Database (1994) AT&T: the database of faces, Cambridge University, Computer Laboratory, Digital Technology Group. http://www.cl.cam.ac.uk/Research/DTG/attarchive:pub/data/att_faces.zip

  13. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A (2015) Object detectors emerge in deep scene CNNs. In: ICLR

  14. Zhu Z, Luo P, Wang X, Tang X (2014) Multi-view perceptron: a deep model for learning face identity and view representations. In: NIPS

  15. LeCun Y, Bengio Y, Hinton G (2015) Deep learning, nature, vol 521. Macmillan Publishers, London, pp 436–444

    Google Scholar 

  16. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. IJCV 60(2):91–110

    Article  Google Scholar 

  17. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Proceedings of CVPR, vol 1, pp 886–893

  18. Shen L, Bai L (2006) A review on Gabor wavelets for face recognition. Pattern Anal Appl 9(2–3):273–292

    Article  MathSciNet  Google Scholar 

  19. Kumar N, Berg AC, Belhumeur PN, Nayar SK (2009) Attribute and simile classifiers for face verification. In: 12th IEEE conference on ICCV, pp 365–372

  20. Huang GB, Lee H, Learned-Miller E (2012) Learning hierarchical representations for face verification with convolutional deep belief networks. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 2518–2525

  21. Sun Y, Wang X, Tang X (2013) Hybrid deep learning for face verification. In: ICCV

  22. Chopra S, Hadsell R, LeCun Y (2005) Learning a similarity metric discriminatively, with application to face verification. In: IEEE conference on CVPR, vol 1, pp 539–546

  23. Toews M, Arbel T (2006) Detection over viewpoint via the object class invariant. Proc Int Conf Pattern Recogn 1:765–768

    Google Scholar 

  24. Taffar M, Benmohammed M (2011) Generic face invariant model for face detection. In: Proceedings of the IP&C conference. Springer, New York, pp 39–45

  25. Fergus R, Perona P, Zisserman A (2003) Object class recognition by unsupervised scale-invariant learning. In: CVPR, Madison, Wisconsin, pp 264–271

  26. Lindeberg T (1998) Feature detection with automatic scale selection. Int J Comput Vis 30(2):79–116

    Article  Google Scholar 

  27. Mikolajczyk K, Schmid C (2004) Scale and affine invariant interest point detectors. IJCV 60(1):63–86

    Article  Google Scholar 

  28. Kadir T, Brady M (2001) Saliency, scale and image description. IJCV 45(2):83–105

    Article  MATH  Google Scholar 

  29. Herbert B, Tinnr T, Gool LV (2006) SURF: speeded up robust features. In: ECCV, Springer LNCS, vol. 3951(1), pp 404–417

  30. Heisele B, Poggio T, Pontil M (2000) Face detection in still gray images. Technical report 1687, Center for Biological and Computational Learning, MIT

  31. Yang M-H, Kriegman DJ, Ahuja N (2002) Detecting faces in images: a survey. IEEE Trans Pattern Anal Mach Intell (PAMI) 24:34–58

    Article  Google Scholar 

  32. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proceedings of the computer vision and pattern recognition (CVPR), pp 511–518

  33. Taffar M, Miguet S, Benmohammed M (2012) Viewpoint invariant face detection, networked digital technologies, communications in computer and information science. Springer, New York, pp 90–402

    Google Scholar 

  34. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cognit Neurosci 3:71–86

    Article  Google Scholar 

  35. Etemad K, Chellappa R (1997) Discriminant analysis for recognition of human face images. J Opt Soc Am 14:1724–1733

    Article  Google Scholar 

  36. Phillips P, Moon H, Rizvi SA, Rauss PJ (2000) The FERET evaluation methodology for face recognition algorithms. IEEE Trans Pattern Anal Mach Intell (PAMI) 22:1090–1104

    Article  Google Scholar 

  37. Penev P, Atick J (1996) Local feature analysis: a general statistical theory for object representation. Netw Comput Neural Syst 7:477–500

    Article  MATH  Google Scholar 

  38. Wiskott L, Fellous J-M, Kuiger N, Von der Malsburg C (1997) Face recognition by elastic bunch graph matching. IEEE Trans PAMI 19:775–779

    Article  Google Scholar 

  39. Ahonen T, Hadid A, Pietikäinen M (2004) Face recognition with local binary patterns. In: Proceedings of the 8th European conference on computer vision (ECCV)

  40. Hadid A, Pietikäinen M (2004) Selecting models from videos for appearance-based face recognition. In: Proceedings of the 17th international conference on pattern recognition (ICPR)

  41. Pope AR, Lowe DG (2000) Probabilistic models of appearance for 3-D object recognition. IJCV 40(2):149–167

    Article  MATH  Google Scholar 

  42. Bart E, Byvatov E, Ullman S (2004) View-invariant recognition using corresponding object fragments. In: ECCV, pp 152–165

  43. Nanni L, Brahnam S, Lumini A (2012) Random interest regions for object recognition based on texture descriptors and bag of features. Expert Syst Appl 39:973–977

    Article  Google Scholar 

  44. Déniz O, Bueno G, Salido J, De la Torre F (2011) Face recognition using histograms of oriented gradients. Pattern Recognit Lett 32:1598–1603

    Article  Google Scholar 

  45. Yu J, Qin Z, Wan T, Zhang X (2013) Feature integration analysis of bag-of-features model for image retrieval. Neurocomputing 120:355–364

    Article  Google Scholar 

  46. Pranam J, Geers G (2010) IFLT based real-time framework for image matching. In: 20th International conference on pattern recognition (ICPR), pp 2242–2245

  47. Janney P, Yu Z (2007) Invariant features of local textures—a rotation invariant local texture descriptor. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), pp 1–7

  48. Sun Y, Wang X, Tang X (2013) Deep convolutional network cascade for facial point detection. In: CVPR, pp 3476–3483

  49. Luo P, Wang X, Tang X (2012) Hierarchical face parsing via deep learning. In: Proceedings of the CVPR

  50. Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2013) Decaf: a deep convolutional activation feature for generic visual recognition. arXivpreprint arXiv:1310.1531

  51. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: NIPS, pp 1097–1105

  52. Zhang N, Paluri M, Ranzato M, Darrell T, Bourdev L (2014) Panda: Pose aligned networks for deep attribute modeling, In: CVPR

  53. Zhang N, Donahue J, Girshick R, Darrell T (2014) Part-based r-cnns for fine-grained category detection. In: ECCV, pp 834–849

  54. Oyallon E, Mallat S, Sifre L (2013) Generic deep networks with wavelet scattering. arXiv preprint arXiv:1312.5940

  55. Wu D, Wu J, Zeng R, Jiang L, Senhadji L, Shu H (2015) Kernel principal component analysis network for image classification. arXiv preprint arXiv:1512.06337

  56. Yanga X, Liu W, Tao D, Cheng J (2017) Canonical correlation analysis networks for two-view image recognition. Inf Sci 385(C):338–352. doi:10.1016/j.ins.2017.01.011

    Article  Google Scholar 

  57. Parkhi OM, Vedaldi A, Zisserman A (2015) Deep face recognition. In: Proceedings of the British machine vision conference (BMVC), Swansea

  58. Taigman Y, Yang M, Ranzato M, Wolf L (2014) Deep-face: closing the gap to human-level performance in face verification. In: Proceedings of CVPR

  59. Huang GB, Ramesh M, Berg T, Miller EL (2007) Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical Report 07–49. University of Massachusetts, Amherst

  60. Wolf L, Hassner Tal, Maoz I (2011) Face recognition in unconstrained videos with matched background similarity. In: Proceedings of the CVPR

  61. Sun Y, Ding L, Wang X, Tang X (2015) Deepid3: Face recognition with very deep neural networks. In: CoRR. arXiv:abs/1502.00873

  62. Chen D, Cao X, Wang L, Wen F, Sun J (2012) Bayesian face revisited: a joint formulation. In: Proceedings of the ECCV, pp 566–579

  63. Sun Y, Chen Y, Wang X, Tang X (2014) Deep learning face representation by joint identification-verification. In: NIPS

  64. Sun Y, Wang X, Tang X (2014) Deep learning face representation from predicting 10,000 classes. In: Proceedings of the CVPR

  65. Sun Y, Wang X, Tang X (2014) Deeply learned face representations are sparse, selective, and robust. In: CoRR. arXiv:abs/1412.1265

  66. Schroff F, Kalenichenko D, Philbin J (2015) Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the CVPR

  67. Mikolajczyk K, Schmid C (2002) An affine invariant interest point detector. In: Proceedings of the 7th European conference on computer vision, Copenhagen, Denmark, vol. I, pp 128–142

  68. Roth D, Yang M, Ahuja N (2000) A snow-based face detector. In: Neural information processing systems

  69. Sung KK, Poggio T (1998) Example-based learning for view-based human face detection. IEEE Trans PAMI 20:39–51

    Article  Google Scholar 

  70. Schneiderman H, Kanade T (1998) Probabilistic modeling of local appearance and spatial relationships for object recognition. In: Proceedings of the computer vision and pattern recognition (CVPR), pp 45–51

  71. Rowley HA, Baluja S, Kanade T (1998) Neural network-based face detection. IEEE Trans Pattern Anal Mach Intell (PAMI) 20(1):23–38

    Article  Google Scholar 

  72. Osuna E, Freund R, Girosit F (1997) Training support vector machines: an application to face detection. In: Proceedings of the computer vision and pattern recognition (CVPR), pp 130–136

  73. Vapnik V (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  74. Farfade SS, Saberian M, Li LJ (2015) Multi-view face detection using deep convolutional neural networks. In: Computer vision and pattern recognition. arXiv:1502.02766

  75. Mikolajczyk K, Schmid C (2001) Indexing based on scale invariant interest points. In: Proceedings of the 8th international conference on computer vision, Vancouver, Canada, pp 525–531

  76. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the em algorithm. J R Stat Soc (Series B) 39(1):1–38

    MathSciNet  MATH  Google Scholar 

  77. Gupta MR, Chen Y (2010) Theory and use of the EM algorithm. Found Trends Signal Process 4(3):223–296

    Article  MATH  Google Scholar 

  78. Liu C (2003) A bayesian discriminating features method for face detection. IEEE Trans Pattern Anal Mach Intell 25:725–740

    Article  Google Scholar 

  79. Elad M, HelOr Y, Keshet R (2002) Rejection based classifier for face detection. Pattern Recognit Lett 23:1459–1471

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mokhtar Taffar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taffar, M., Miguet, S. Local appearance modeling for objects class recognition. Pattern Anal Applic 22, 439–455 (2019). https://doi.org/10.1007/s10044-017-0639-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-017-0639-2

Keywords

Navigation