Skip to main content
Log in

Sparse subspace clustering via nonconvex approximation

  • Short paper
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Among existing clustering methods, sparse subspace clustering (SSC) obtains superior clustering performance in grouping data points from a union of subspaces by solving a relaxed \(\ell _{0}\)-minimization problem by \(\ell _{1}\)-norm. The use of \(\ell _{1}\)-norm instead of the \(\ell _{0}\) one can make the object function convex, while it also causes large errors on large coefficients in some cases. In this work, we propose using the nonconvex approximation to replace \(\ell _{0}\)-norm for SSC, termed as SSC via nonconvex approximation (SSCNA), and develop a novel clustering algorithm with the enhanced sparsity based on the Alternating Direction Method of Multipliers. We further prove that the proposed nonconvex approximation is closer to \(\ell _{0}\)-norm than the \(\ell _{1}\) one and is bounded by \(\ell _{0}\)-norm. Numerical studies show that the proposed nonconvex approximation helps to improve clustering performance. We also theoretically verify the convergence of the proposed algorithm with a three-variable objective function. Extensive experiments on four benchmark datasets demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Gonzalez RC, Woods RE (2008) Digital image processing, 3rd edn. Ed: Prentice Hall

  2. Shapiro LG, Stockman GC (2001) Computer vision. Prentice Hall, Upper Saddle River

    Google Scholar 

  3. Mitchell TM (1997) Machine learning. WCB, Boston

    MATH  Google Scholar 

  4. Lecun Y (1998) The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/

  5. Basri R, Jacobs DW (2003) Lambertian reflectance and linear subspaces. IEEE Trans Pattern Anal Mach Intell 25(2):218–233

    Article  Google Scholar 

  6. Tomasi C, Kanade T (1992) Shape and motion from image streams under orthography. Int J Comput Vis 9(2):137–154

    Article  Google Scholar 

  7. Agrawal R, Gehrke JE, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the 1998 ACM SIGMOD international conference on Management of data, vol 27, pp 94–105

  8. Costeira JP, Kanade T (1998) A multibody factorization method for independently moving objects. Int J Comput Vis 29(3):159–179

    Article  Google Scholar 

  9. Vidal R, Ma Y, Sastry S (2005) Generalized principal component analysis (GPCA). IEEE Trans Pattern Anal Mach Intell 27(12):1945–1959

    Article  Google Scholar 

  10. Tipping ME, Bishop CM (1999) Mixtures of probabilistic principal component analyzers. Neural Comput 11(2):443–482

    Article  Google Scholar 

  11. Gruber A, Weiss Y (2004) Multibody factorization with uncertainty and missing data using the EM algorithm. In: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, 2004. CVPR 2004, vol 1, pp 707–714

  12. Ho J, Yang M-H, Lim J, Lee K-C, Kriegman DJ (2003) Clustering appearances of objects under varying illumination conditions. In: Proceedings of 2003 IEEE computer society conference on computer vision and pattern recognition, 2003, vol 1, pp 11–18

  13. Tseng P (2000) Nearest q-flat to m points. J Optim Theory Appl 105(1):249–252

    Article  MathSciNet  MATH  Google Scholar 

  14. Yan J, Pollefeys M (2006) A general framework for motion segmentation: independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In: ECCV’06 Proceedings of the 9th European conference on Computer Vision-Volume Part IV, pp 94–106

  15. Chen G, Lerman G (2009) Spectral curvature clustering (SCC). Int J Comput Vis 81(3):317–330

    Article  Google Scholar 

  16. Liu G, Lin Z, Shuicheng Yan J, Sun YY, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  17. Vidal R, Favaro P (2014) Low rank subspace clustering (LRSC). Pattern Recognit Lett 43:47–61

    Article  Google Scholar 

  18. Lu C-Y, Min H, Zhao Z-Q, Zhu L, Huang D-S, Yan S (2012) Robust and efficient subspace segmentation via least squares regression. In: European conference on computer vision, pp 347–360

  19. Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781

    Article  Google Scholar 

  20. You C, Robinson DP, Vidal R (2016) Scalable sparse subspace clustering by orthogonal matching pursuit. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 3918–3927

  21. Yang Y, Feng J, Jojic N, Yang J, Huang TS (2016) \(\ell ^{0}\)-sparse subspace clustering. In: European conference on computer vision, pp 731–747

  22. Lu C, Feng J, Lin Z, Yan S (2013) Correlation adaptive subspace segmentation by trace lasso. In: 2013 IEEE international conference on computer vision, pp 1345–1352

  23. Jun X, Kui X, Chen K, Ruan J (2015) Reweighted sparse subspace clustering. Comput Vis Image Underst 138:25–37

    Article  Google Scholar 

  24. Lu C, Tang J, Lin M, Lin L, Yan S, Lin Z (2013) Correntropy induced l2 graph for robust subspace clustering. In: 2013 IEEE international conference on computer vision, pp 1801–1808

  25. Patel VM, Van Nguyen H, Vidal R (2015) Latent space sparse and low-rank subspace clustering. IEEE J Sel Topics Signal Process 9(4):691–701

    Article  Google Scholar 

  26. Wang J, Shi D, Cheng D, Zhang Y, Gao J (2016) LRSR: low-rank-sparse representation for subspace clustering. Neurocomputing 214:1026–1037

    Article  Google Scholar 

  27. Li C-G, Vidal R (2015) Structured sparse subspace clustering: a unified optimization framework. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 277–286

  28. Fan J, Li Runze (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96(456):1348–1360

    Article  MathSciNet  MATH  Google Scholar 

  29. Candes EJ, Wakin MB, Boyd SP (2008) Enhancing sparsity by reweighted \(\ell _{1}\) minimization. J Fourier Anal Appl 14:877–905

    Article  MathSciNet  MATH  Google Scholar 

  30. Foucart S, Lai M-J (2009) Sparsest solutions of underdetermined linear systems via \(\ell _{q}\)-minimization for \(0<q\leqslant 1\). Appl Comput Harmon Anal 26(3):395–407

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhao Y-B, Li D (2012) Reweighted \(\ell _{1}\)-minimization for sparse solutions to underdetermined linear systems. SIAM J Optim 22(3):1065–1088

    Article  MathSciNet  MATH  Google Scholar 

  32. Jojic Vladimir, Saria Suchi, Koller Daphne (2011) Convex envelopes of complexity controlling penalties: the case against premature envelopment. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, vol 15, pp 399–406

  33. Gabay D, Mercier B (1976) A dual algorithm for the solution of non linear variational problems via finite element approximation. Comput Math Appl 2(1):17–40

    Article  MATH  Google Scholar 

  34. Zhang Y (2010) Recent advances in alternating direction methods: practice and theory. In: IPAM workshop on continuous optimization

  35. Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analysis and an algorithm. Adv Neural Inf Process Syst 14:849–856

    Google Scholar 

  36. Harikumar G, Bresler Y (1996) A new algorithm for computing sparse solutions to linear inverse problems. In: 1996 IEEE international conference on acoustics, speech, and signal processing conference proceedings, vol 3, pp 1331–1334

  37. Davies ME, Gribonval R (2009) Restricted isometry constants where \(\ell _{p}\) sparse recovery can fail for \(0<p\leqslant 1\). IEEE Trans Inf Theory 55(5):2203–2214

    Article  MATH  Google Scholar 

  38. Sahoo P, Riedel T (1998) Mean value theorems and functional equations. World Scientific

  39. Zheng X, Cai D, He X, Ma W-Y, Lin X (2004) Locality preserving clustering for image database. In: Proceedings of the 12th annual ACM international conference on multimedia, pp 885–891

  40. Liu G, Lin Z, Yu Y (2010) Robust subspace segmentation by low-rank representation. In: Proceedings of the 27th international conference on machine learning, pp 663–670

  41. Lee K-C, Ho J, Kriegman DJ (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698

    Article  Google Scholar 

  42. Martinez AM (1998) The AR face database. CVC Technical Report, 24

  43. Tron R, Vidal R (2007) A benchmark for the comparison of 3-D motion segmentation algorithms. In: 2007 IEEE conference on computer vision and pattern recognition, pp 1–8

  44. Ochs P, Malik J, Brox T (2014) Segmentation of moving objects by long term video analysis. IEEE Trans Pattern Anal Mach Intell 36(6):1187–1200

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jun Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, W., Wu, XJ., Kittler, J. et al. Sparse subspace clustering via nonconvex approximation. Pattern Anal Applic 22, 165–176 (2019). https://doi.org/10.1007/s10044-018-00774-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-018-00774-z

Keywords

Navigation