Skip to main content
Log in

Fuzzy chromatic co-occurrence matrices for tracking objects

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Tracking objects is an important field for many applications like driving assistance and video surveillance. Every tracking system should be able to track objects in complex scenes. One of the most challenging problems is tracking of objects undergoing an occlusion. Indeed, several tracking systems suffer from lack of information to accomplish the tracking task when two or many objects are in occlusion. To address this issue, this paper presents a novel approach combining fuzzy logic with chromatic co-occurrence matrices in order to develop a robust tracking method that is able to determine the target position more accurately during an illumination variation or an occlusion situation. The qualitative and quantitative studies on challenging sequences demonstrate that the results obtained by the proposed algorithm are very competitive in comparison with several state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang Y, Lu H, Zhang L, Ruan X, Sakai S (2016) Video anomaly detection based on locality sensitive hashing filters. Pattern Recogn 59:302–311

    Article  Google Scholar 

  2. Forkan ARM, Khalil I, Tari Z, Foufou S, Bouras A (2015) A context-aware approach for long-term behavioural change detection and abnormality prediction in ambient assisted living. Pattern Recogn 48(3):628–641

    Article  Google Scholar 

  3. Wang J, Zhang L, Zhang D, Li K (2013) An adaptive longitudinal driving assistance system based on driver characteristics. IEEE Trans Intell Transp Syst 14(1):1–12

    Article  Google Scholar 

  4. Messelodi S, Modena CM, Zanin M (2005) A computer vision system for the detection and classification of vehicles at urban road intersections. Pattern Anal Appl 8(1–2):17–31

    Article  MathSciNet  Google Scholar 

  5. Benavidez P, Jamshidi M (2011) Mobile robot navigation and target tracking system. In: 2011 6th international conference on system of systems engineering (SoSE), pp 299–304

  6. Ding S, Zhai Q, Li Y, Zhu J, Zheng YF, Xuan D (2016) Simultaneous body part and motion identification for human-following robots. Pattern Recogn 50:118–130

    Article  Google Scholar 

  7. De-la-Torre M, Granger E, Sabourin R, Gorodnichy DO (2015) Adaptive skew-sensitive ensembles for face recognition in video surveillance. Pattern Recogn 48(11):3385–3406

    Article  Google Scholar 

  8. Wang X (2013) Intelligent multi-camera video surveillance: a review. Pattern Recogn Lett 34(1):3–19

    Article  Google Scholar 

  9. Elafi I, Jedra M, Zahid N (2016) Unsupervised detection and tracking of moving objects for video surveillance applications. Pattern Recogn Lett 84:70–77

    Article  Google Scholar 

  10. Zhong Z, Zhang B, Lu G, Zhao Y, Xu Y (2017) An adaptive background modeling method for foreground segmentation. IEEE Trans Intell Transp Syst 18(5):1109–1121

    Article  Google Scholar 

  11. Jepson AD, Fleet DJ, Black MJ (2002) A layered motion representation with occlusion and compact spatial support. In :European conference in computer vision—ECCV 2002, pp 692–706, Copenhagen, Denmark

  12. Fu Y, Erdem AT, Tekalp AM (2000) Tracking visible boundary of objects using occlusion adaptive motion snake. IEEE Trans Image Process 9(12):2051–2060

    Article  Google Scholar 

  13. Nguyen HT, Smeulders AWM (2004) Fast occluded object tracking by a robust appearance filter. IEEE Trans Pattern Anal Mach Intell 26(8):1099–1104

    Article  Google Scholar 

  14. Cucchiara R, Grana C, Tardini G, Vezzani R (2004) Probabilistic people tracking for occlusion handling. In: Proceedings of the 17th international conference on pattern recognition. ICPR 2004, Cambridge, England, vol 1, pp 132–135

  15. Huang Y, Essa I (2005) Tracking multiple objects through occlusions. In: IEEE computer society conference on computer vision and pattern recognition. CVPR 2005, San Diego, vol 2, pp 1051–1058

  16. Senior A, Hampapur A, Tian Y-L, Brown L, Pankanti S, Bolle R (2006) Appearance models for occlusion handling. Image Vis Comput 24(11):1233–1243

    Article  Google Scholar 

  17. Jia X, Lu H, Yang MH (2012) Visual tracking via adaptive structural local sparse appearance model. In: IEEE conference on computer vision and pattern recognition (CVPR), Providence, Rhode Island, pp 1822–1829

  18. Tang S, Andriluka M, Schiele B (2013) Detection and tracking of occluded people. Int J Comput Vis 110(1):58–69

    Article  Google Scholar 

  19. Wu B, Nevatia R (2007) Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors. Int J Comput Vis 75(2):247–266

    Article  Google Scholar 

  20. Ding J, Tang Y, Tian H, Liu W, Huang Y (2015) Robust tracking with adaptive appearance learning and occlusion detection. Multimed Syst 1:1–15

    Google Scholar 

  21. Paschos G, Radev I, Prabakar N (2003) Image content-based retrieval using chromaticity moments. IEEE Trans Knowl Data Eng 15(5):1069–1072

    Article  Google Scholar 

  22. Penatti OAB, Valle E, da Torres RA (2012) Comparative study of global color and texture descriptors for web image retrieval. J Vis Commun Image Represent 23(2):359–380

    Article  Google Scholar 

  23. Upneja R, Singh C (2015) Fast computation of Jacobi–Fourier moments for invariant image recognition. Pattern Recogn 48(5):1836–1843

    Article  MATH  Google Scholar 

  24. Hwang S-K, Kim W-Y (2006) A novel approach to the fast computation of Zernike moments. Pattern Recogn 39(11):2065–2076

    Article  MATH  Google Scholar 

  25. Tahmasbi A, Saki F, Shokouhi SB (2011) Classification of benign and malignant masses based on Zernike moments. Comput Biol Med 41(8):726–735

    Article  Google Scholar 

  26. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans. Syst. Man Cybern SMC-3(6):610–621

    Article  Google Scholar 

  27. Arvis V, Debain C, Berducat M, Benassi A (2011) Generalization of the cooccurrence matrix for colour images: application to colour texture classification. Image Anal Stereol 23(1):63–72

    Article  MATH  Google Scholar 

  28. Cheng HD, Chen CH, Chiu HH (1997) Image segmentation using fuzzy homogeneity criterion. Inf Sci 98(1):237–262

    Article  Google Scholar 

  29. Jawahar CV, Ray AK (1996) Fuzzy statistics of digital images. IEEE Signal Process Lett 3(8):225–227

    Article  Google Scholar 

  30. Sen D, Pal SK (2006) Image segmentation using global and local fuzzy statistics. In: 2006 annual IEEE India conference, New Delhi, pp 1–6

  31. Munklang Y, Auephanwiriyakul S, Theera-Umpon N (2013) A novel fuzzy co-occurrence matrix for texture feature extraction. Comput Sci Appl ICCSA 2013:246–257

    Google Scholar 

  32. Su Y, Zhao Q, Zhao L, Gu D (2014) Abrupt motion tracking using a visual saliency embedded particle filter. Pattern Recogn 47(5):1826–1834

    Article  Google Scholar 

  33. Zhou H, Fei M, Sadka A, Zhang Y, Li X (2014) Adaptive fusion of particle filtering and spatio-temporal motion energy for human tracking. Pattern Recogn 47(11):3552–3567

    Article  Google Scholar 

  34. Gustafsson F (2010) Particle filter theory and practice with positioning applications. IEEE Aerosp Electron Syst Mag 25(7):53–82

    Article  Google Scholar 

  35. Skrzypniak M, Macaire L, Postaire J-G (2000) Indexation d’images de personnes par analyse de matrices de co-occurrences couleur. In: Actes CORESA’00 Journ. D’études D’échanges Compression Représentation Signaux Audiov, Poitiers, France, pp 411–418

  36. Muselet D (2005) Reconnaissance automatique d’objets sous éclairage non contrôlé par analyse d’images couleur. Ph.D. thesis, Lille 1 University, France

  37. “VOT Challenge.” http://www.votchallenge.net/. Accessed 21 Feb 2017

  38. Danelljan M, Hager G, Khan FS, Felsberg M (2016) Discriminative scale space tracking. IEEE Trans Pattern Anal Mach Intell 5(99):1

    Google Scholar 

  39. Zhang K, Zhang L, Liu Q, Zhang D, Yang M-H (2014) Fast visual tracking via dense spatio-temporal context learning. In: ECCV 2014, Zurich, pp 127–141

  40. Roffo G, Melzi S (2016) Object tracking via dynamic feature selection processes. ArXiv160901958 Cs

  41. Solis Montero A, Lang J, Laganiere R (2015) Scalable Kernel correlation filter with sparse feature integration. In: IEEE international conference on computer vision workshops, Santiago, Chile, pp 24–31

  42. Maresca ME, Petrosino A (2013) MATRIOSKA: a multi-level approach to fast tracking by learning. In: ICIAP 2013, Naples, pp 419–428

  43. Wang X, Valstar M, Martinez, Haris Khan M, Pridmore T (2015) TRIC-track: tracking by regression with incrementally learned cascades. In: IEEE international conference on computer vision, Santiago, Chile, pp 4337–4345

  44. Godec M, Roth PM, Bischof H (2011) Hough-based tracking of non-rigid objects. In: International conference on computer vision, Barcelona, Spain, pp 81–88

  45. Nebehay G, Pflugfelder R (2015) Clustering of static-adaptive correspondences for deformable object tracking. In: IEEE conference on computer vision and pattern recognition, Boston, pp 2784–2791

  46. Čehovin L, Leonardis A, Kristan M (2016) Robust visual tracking using template anchors. In: IEEE winter conference on applications of computer vision (WACV), pp 1–8

  47. Vojíř T, Matas J (2014) The enhanced flock of trackers. In: Cipolla R, Battiato S, Farinella GM (eds) Registration and recognition in images and videos. Springer, Berlin, pp 113–136

    Chapter  Google Scholar 

  48. Maresca ME, Petrosino A (2014) Clustering local motion estimates for robust and efficient object tracking. In: European conference on computer vision, Zurich, Switzerland, pp 244–253

  49. Du D, Qi H, Wen L, Tian Q, Huang Q, Lyu S (2016) Geometric hypergraph learning for visual tracking. IEEE Trans Cybern PP(99):1–14

    Google Scholar 

  50. Cehovin L, Kristan M, Leonardis A (2013) Robust visual tracking using an adaptive coupled-layer visual model. IEEE Trans Pattern Anal Mach Intell 35(4):941–953

    Article  Google Scholar 

  51. Hare S et al (2016) Struck: structured output tracking with kernels. IEEE Trans Pattern Anal Mach Intell 38(10):2096–2109

    Article  Google Scholar 

  52. Ross DA, Lim J, Lin R-S, Yang M-H (2007) Incremental learning for robust visual tracking. Int J Comput Vis 77(1–3):125–141

    Google Scholar 

  53. Babenko B, Yang MH, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632

    Article  Google Scholar 

  54. Gao J, Ling H, Hu W, Xing J (2014) Transfer learning based visual tracking with gaussian processes regression. In: Computer vision—ECCV 2014, Zurich, pp 188–203

  55. Poostchi M, Aliakbarpour H, Viguier R, Bunyak F, Palaniappan K, Seetharaman G (2016) Semantic depth map fusion for moving vehicle detection in aerial video. In: IEEE conference on computer vision and pattern recognition workshops, pp 32–40

  56. González A, Martín-Nieto R, Bescós J, Martínez JM (2014) Single object long-term tracker for smart control of a PTZ camera. In: Proceedings of the international conference on distributed smart cameras, pp 39:1–39:6

  57. Shi J, Tomasi C (1994) Good features to track. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 593–600

  58. Comaniciu D, Ramesh V, Meer P (2000) Real-time tracking of non-rigid objects using mean shift. In: IEEE conference on computer vision and pattern recognition, vol 2, pp 142–149

  59. Kristan M, Leonardis A, Matas J et al (2016) The visual object tracking VOT2016 challenge results. In: Computer vision—ECCV 2016 workshops, Amsterdam, pp 777–823

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issam Elafi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elafi, I., Jedra, M. & Zahid, N. Fuzzy chromatic co-occurrence matrices for tracking objects. Pattern Anal Applic 22, 1065–1077 (2019). https://doi.org/10.1007/s10044-018-0726-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-018-0726-z

Keywords

Navigation