Skip to main content
Log in

Intuitionistic fuzzy linguistic clustering algorithm based on a new correlation coefficient for intuitionistic fuzzy linguistic information

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

For observations to be classified, when scoring rules are imprecise or the cost of their computation is too high, the clustering method under linguistic information is necessary. Considering the accuracy of intuitionistic fuzzy linguistic variable in expressing experts’ opinions, a clustering algorithm is presented in this paper. Firstly, the concept of triangular intuitionistic fuzzy linguistic variables (TIFLVs) is introduced, and a new formula is developed for calculating correlation coefficient of TIFLVs. Then, the correlation coefficient plays a central role in our modified λ-cutting algorithm for clustering, which is utilized to construct an equivalence correlation matrix. In addition, a silhouette cluster validity index of TIFLVs is proposed to revise the results of clustering. Finally, the experimental results demonstrate the application and practicability of the clustering algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  Google Scholar 

  2. Zadeh LA (1975) The concept of a linguistic variable and its applications to approximate reasoning—part I. Inf Sci 8:199–249

    Article  MATH  Google Scholar 

  3. Zadeh LA (1975) The concept of a linguistic variable and its applications to approximate reasoning—part II. Inf Sci 8:301–357

    Article  MATH  Google Scholar 

  4. Zadeh LA (1975) The concept of a linguistic variable and its applications to approximate reasoning—part III. Inf Sci 9:43–80

    Article  MATH  Google Scholar 

  5. Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybern 1:28–44

    Article  MathSciNet  MATH  Google Scholar 

  6. Atanassov K (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96

    Article  MATH  Google Scholar 

  7. Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation techniques. J Intell Inf Syst 17(2):107–145

    Article  MATH  Google Scholar 

  8. Bellman R, Kalaba R, Zadeh L (1966) Abstraction and pattern classification. J Math Anal Appl 13(1):1–7

    Article  MathSciNet  MATH  Google Scholar 

  9. Macqueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, California, USA, vol 1, no 14, pp 281–297

  10. Gasch AP, Eisen MB (2002) Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biol 3(11):1–22

    Article  Google Scholar 

  11. Li MJ, Ng MK, Cheung YM, Huang JZ (2008) Agglomerative fuzzy k-means clustering algorithm with selection of number of clusters. IEEE Trans Knowl Data Eng 20(11):1519–1534

    Article  Google Scholar 

  12. Burrough PA, van Gaans PFM, MacMillan RA (2000) High-resolution landform classification using fuzzy k-means. Fuzzy Sets Syst 113(1):37–52

    Article  MATH  Google Scholar 

  13. Li D, Deogun J, Spaulding W, Shuart B (2004) Towards missing data imputation: a study of fuzzy k-means clustering method rough sets and current trends in computing. Springer, Berlin, pp 573–579

    MATH  Google Scholar 

  14. Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10(2):191–203

    Article  Google Scholar 

  15. Dunn JC (1974) Well-separated clusters and optimal fuzzy partitions. J Cybern 4(1):95–104

    Article  MathSciNet  MATH  Google Scholar 

  16. Gong MG, Liang Y, Shi J, Ma WeP, Ma JJ (2013) Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Trans Image Process 22(2):573–584

    Article  MathSciNet  MATH  Google Scholar 

  17. Izakian H, Abraham A (2011) Fuzzy C-means and fuzzy swarm for fuzzy clustering problem. Expert Syst Appl 38(3):1835–1838

    Article  Google Scholar 

  18. Krinidis S, Chatzis V (2010) A robust fuzzy local information C-means clustering algorithm. IEEE Trans Image Process 19(5):1328–1337

    Article  MathSciNet  MATH  Google Scholar 

  19. Pal NR, Pal K, Keller JM, Bezdek JC (2005) A possibilistic fuzzy c-means clustering algorithm. IEEE Trans Fuzzy Syst 13(4):517–530

    Article  Google Scholar 

  20. Wang PZ (1983) Fuzzy set theory and applications. Shanghai Scientific and Technical Publishers, Shanghai

    Google Scholar 

  21. Xu ZS (2006) On correlation measures of intuitionistic fuzzy sets. Lect Notes Comput Sci 4224:16–24

    Article  Google Scholar 

  22. Mitchell HB (2004) A correlation coefficient for intuitionistic fuzzy sets. Int J Intell Syst 19:483–490

    Article  MATH  Google Scholar 

  23. Hung WL, Wu JW (2002) Correlation of intuitionistic fuzzy sets by centroid method. Inf Sci 144:219–225

    Article  MathSciNet  MATH  Google Scholar 

  24. Xu ZS, Chen J, Wu JJ (2008) Clustering algorithm for intuitionistic fuzzy sets. Inf Sci 178(19):3775–3790

    Article  MathSciNet  MATH  Google Scholar 

  25. Le HS, Cuong BC, Lanzi PL et al (2012) A novel intuitionistic fuzzy clustering method for geo-demographic analysis. Expert Syst Appl 39(10):9848–9859

    Article  Google Scholar 

  26. Xian SD, Xue WT, Zhang JF, Yin YB, Xie Q (2015) Intuitionistic fuzzy linguistic induced ordered weighted averaging operator for group decision making. Int J Uncertain Fuzziness Knowl Based Syst 23(4):627–648

    Article  MathSciNet  MATH  Google Scholar 

  27. Xian SD, Sun WJ,Xu SH,Gao YY(2016) Fuzzy linguistic induced OWA Minkowski distance operator and its application in group decision making. Pattern Anal Appl 9(2):325–335

    Article  MathSciNet  Google Scholar 

  28. Zhang HM, Xu ZS, Chen Q (2007) On clustering approach to intuitionistic fuzzy sets. Control Decis 22(8):882–888

    MathSciNet  MATH  Google Scholar 

  29. Xu ZS, Yager RR (2006) Some geometric aggregation operators based intuitionistic fuzzy sets. Int J Gen Syst 35(4):417–433

    Article  MathSciNet  MATH  Google Scholar 

  30. Yager RR, Filev DP (1998) Operations for granular computing: mixing words and numbers. In: Proceedings of the fuzzy-IEEE world congress on computational intelligence, Anchorage, pp 123–128

  31. Xian SD (2012) Fuzzy linguistic induce order weighted averaging operator and its application. J Appl Math. https://doi.org/10.1155/2012/210392

    Article  MATH  Google Scholar 

  32. Xian SD, Sun WJ (2014) Fuzzy linguistic induced euclidean OWA distance operator and its application in group linguistic decision making. Int J Intell Syst 29(5):478–491

    Article  Google Scholar 

  33. Herrera F, Herrera-Viedma E (2000) Linguistic decision analysis: steps for solving decision problems under linguistic information. Fuzzy Sets Syst 115:67–82

    Article  MathSciNet  MATH  Google Scholar 

  34. MartíNez L, Herrera F (2012) An overview on the 2-tuple linguistic model for computing with words in decision making: extensions, applications and challenges. Inf Sci 207:1–18

    Article  MathSciNet  Google Scholar 

  35. Li DF, Nan JX, Zhang MJ (2010) A ranking method of triangular intuitionistic fuzzy numbers and application to decision making. Int J Comput Intell Syst 3(5):522–530

    Article  Google Scholar 

  36. Herrera F, Herrera-Viedma E, Verdegay JL (1996) Direct approach processes in group decision making using linguistic OWA operators. Fuzzy Sets Syst 79(2):175–190

    Article  MathSciNet  MATH  Google Scholar 

  37. Herrera F, Herrera-Viedma E (1997) Aggregation operators for linguistic weighted information. IEEE Trans Syst Man Cybern Part A Syst Hum 27(5):646–656

    Article  Google Scholar 

  38. Xu ZS (2007) Intuitionistic fuzzy aggregation operators. IEEE Trans Fuzzy Syst 15:1179–1187

    Article  Google Scholar 

  39. Xian SD, Jing N, Xue WT et al (2017) A new intuitionistic fuzzy linguistic hybrid aggregation operator and its application for linguistic group decision making. Int J Intell Syst 32(12):1332–1352

    Article  Google Scholar 

  40. Xu ZS (2007) Group decision making with triangular fuzzy linguistic variables. Lect Notes Comput Sci 4881:17–26

    Article  Google Scholar 

  41. Xu ZS (2004) Uncertain linguistic aggregation operators based approach to multiple attribute group decision making under uncertain linguistic environment. Inf Sci 168:178–184

    Article  MATH  Google Scholar 

  42. Amorim RCD, Hennig C (2015) Recovering the number of clusters in data sets with noise features using feature rescaling factors. Inf Sci 324:126–145

    Article  MathSciNet  Google Scholar 

  43. Amorim RCD, Hennig C (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Comput Appl Math 20:53–65

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chongqing research and innovation project of graduate students (Nos. CYS17227, CYS18252), the Graduate Teaching Reform Research Program of Chongqing Municipal Education Commission (Nos. YJG183074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidong Xian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xian, S., Yin, Y., Liu, Y. et al. Intuitionistic fuzzy linguistic clustering algorithm based on a new correlation coefficient for intuitionistic fuzzy linguistic information. Pattern Anal Applic 22, 907–918 (2019). https://doi.org/10.1007/s10044-018-0744-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-018-0744-x

Keywords

Navigation