Skip to main content
Log in

Fractal dimension of synthesized and natural color images in Lab space

  • Theoretical advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Fractal dimension (FD) is a useful metric for the analysis of natural images that exhibit a high degree of complexity, randomness and irregularity in color and texture. Several approaches exist in the literature to measure FD of gray-scale images. The aim of this study is to introduce a FD estimation method for color images with color proximity in Lab space. The proposed method uses a xy-plane partitioning–shifting mechanism, where the divisors of image size are used as grid sizes. The proposed method simulates on synthesized color fractal Brownian motion (FBM) images, publicly available Brodatz database, Google color fractal images and noisy Brodatz database. The random midpoint displacement algorithm for the formation of gray-scale images is extended in this work to synthesize color FBM images. Noisy Brodatz database is obtained by adding salt-and-pepper noise with different noise densities to understand the behavior of FD. The experimental results illustrate that the proposed method is effective and efficient and outperforms the three state-of-the-art methods by observing the values of two proposed metrics, namely average error and average computed FD. A new mathematical expression for estimating FD of a color image is demonstrated, which relies on the number of edge pixels of individual color channel using multiple linear regression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Zhang H, Cao X, Ho JKL, Chow TWS (2017) Object-level video advertising: an optimization framework. IEEE Trans Ind Inf 13(2):520–531

    Google Scholar 

  2. Zhang H, Wang S, Xu X, Chow TWS, Wu QMJ (2018) Tree2Vector: learning a vectorial representation for tree-structured data. IEEE Trans Neural Netw Learn Syst 99:1–15

    MathSciNet  Google Scholar 

  3. Liu L, Fieguth P (2012) Texture classification from random features. IEEE Trans Pattern Anal Mach Intell 34(3):574–586

    Google Scholar 

  4. Felsberg M, Larsson F, Wiklund J, Wadstromer N, Ahlberg J (2013) Online learning of correspondences between images. IEEE Trans Pattern Anal Mach Intell 35(1):118–129

    Google Scholar 

  5. Liu S, Bai X (2012) Discriminative features for image classification and retrieval. Pattern Recognit Lett 33(6):744–751

    Google Scholar 

  6. Farajzadeh N, Faez K, Pan G (2010) Study on the performance of moments as invariant descriptors for practical face recognition systems. IET Comput Vis 4(4):272–285

    Google Scholar 

  7. Mandelbrot BB (1983) The fractal geometry of nature, no 2. W.H. Freeman, New York

    Google Scholar 

  8. Keller JM, Chen S, Crownover RM (1989) Texture description and segmentation through fractal geometry. Comput Vis Graph Image Process 45(2):150–166

    Google Scholar 

  9. Chaudhuri BB, Sarkar N (1995) Texture segmentation using fractal dimension. IEEE Trans Pattern Anal Mach Intell 17(1):72–77

    Google Scholar 

  10. Neil G, Curtis KM (1997) Shape recognition using fractal geometry. Pattern Recognit 30(12):1957–1969

    Google Scholar 

  11. Sugihara G, May RM (1990) Applications of fractals in ecology. Trends Ecol Evolut 5(3):79–86

    Google Scholar 

  12. Xu Y, Ji H, Fermüller C (2009) Viewpoint invariant texture description using fractal analysis. Int J Comput Vis 83(1):85–100

    Google Scholar 

  13. Xu Y, Quan Y, Ling H, Ji H (2011) Dynamic texture classification using dynamic fractal analysis. In: IEEE international conference on computer vision (ICCV), pp 1219–1226

  14. Xu H, Zhai G, Yang X (2013) Single image super-resolution with detail enhancement based on local fractal analysis of gradient. IEEE Trans Circuits Syst Video Technol 23(10):1740–1754

    Google Scholar 

  15. Cervantes-De la Torre F, González-Trejo JI, Real-Ramírez CA, Hoyos-Reyes LF (2013) Fractal dimension algorithms and their application to time series associated with natural phenomena. In: Journal of physics: conference series, vol 475, p 012002

  16. Yu L, Zhang D, Wang K, Wen Yang (2005) Coarse iris classification using box-counting to estimate fractal dimensions. Pattern Recognit 38(11):1791–1798

    Google Scholar 

  17. Seal A, Panigrahy C (2019) Human authentication based on fusion of thermal and visible face images. Multimedia Tools Appl. https://doi.org/10.1007/s11042-019-7701-6

    Article  Google Scholar 

  18. Manousaki AG, Manios AG, Tsompanaki EI, Tosca AD (2006) Use of color texture in determining the nature of melanocytic skin lesions—a qualitative and quantitative approach. Comput Biol Med 36(4):419–427

    Google Scholar 

  19. Panigrahy C, Seal A, Mahato NK, Bhattacharjee D (2019) Differential box counting methods for estimating fractal dimension of gray-scale images: a survey. Chaos Solitons Fractals 126:178–202

    MathSciNet  Google Scholar 

  20. McMullen C (1984) The Hausdorff dimension of general Sierpiński carpets. Nagoya Math J 96:1–9

    MathSciNet  MATH  Google Scholar 

  21. Falconer K (2004) Fractal geometry: mathematical foundations and applications. Wiley, Hoboken

    MATH  Google Scholar 

  22. Barnsley MF (2014) Fractals everywhere. Academic Press, Cambridge

    MATH  Google Scholar 

  23. Nilsson AB (2005) Fractal dimensions and projections. Umeå University, Umeå

    Google Scholar 

  24. Jansson S (2006) Evaluation of methods for estimating fractal properties of intensity images. Ph.D. dissertation, Umeå University, Umeå, Sweden

  25. Sun W, Xu G, Gong P, Liang S (2006) Fractal analysis of remotely sensed images: a review of methods and applications. Int J Remote Sens 27(22):4963–4990

    Google Scholar 

  26. Peleg S, Naor J, Hartley R, Avnir D (1984) Multiple resolution texture analysis and classification. IEEE Trans Pattern Anal Mach Intell 4:518–523

    Google Scholar 

  27. Pentland AP (1984) Fractal-based description of natural scenes. IEEE Trans Pattern Anal Mach Intell 6:661–674

    Google Scholar 

  28. Clarke KC (1986) Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method. Comput Geosci 12(5):713–722

    Google Scholar 

  29. Voss RF (1991) Random fractals: characterization and measurement. In: Pynn R, Skjeltorp A (eds) Scaling phenomena in disordered systems. Springer, Boston, pp 1–11

    Google Scholar 

  30. Gagnepain JJ, Roques-Carmes C (1986) Fractal approach to two-dimensional and three-dimensional surface roughness. Wear 109(1):119–126

    Google Scholar 

  31. Sarkar N, Chaudhuri BB (1994) An efficient differential box-counting approach to compute fractal dimension of image. IEEE Trans Syst Man Cybern 24(1):115–120

    Google Scholar 

  32. Li J, Du Q, Sun C (2009) An improved box-counting method for image fractal dimension estimation. Pattern Recognit 42(11):2460–2469

    MATH  Google Scholar 

  33. Liu Y, Chen L, Wang H, Jiang L, Zhang Y, Zhao J, Wang D, Zhao Y, Song Y (2014) An improved differential box-counting method to estimate fractal dimensions of gray-level images. J Vis Commun Image Represent 25(5):1102–1111

    Google Scholar 

  34. Panigrahy C, Garcia-Pedrero A, Seal A, Rodríguez-Esparragón D, Mahato NK, Gonzalo-Martín C (2017) An approximated box height for differential-box-counting method to estimate fractal dimensions of gray-scale images. Entropy 19(10):534

    MathSciNet  Google Scholar 

  35. Piantanelli A, Serresi S, Ricotti G, Giuliana R, Annamaria Z, Basso A, Piantanelli L (2002) Color-based method for fractal dimension estimation of pigmented skin lesion contour. In: Losa GA, Merlini D, Nonnenmacher TF, Weibel ER (eds) Fractals in biology and medicine. Springer, Basel, pp 127–136

    Google Scholar 

  36. Mureika JR (2005) Fractal dimensions in perceptual color space: a comparison study using Jackson Pollock’s art. Chaos Interdiscip J Nonlinear Sci 15(4):043702

    MATH  Google Scholar 

  37. Lindström J (2008) A method for estimating the fractal dimension of digital color images. Master’s thesis, Umea University, Department of Computing Science, Sweden

  38. Ivanovici M, Richard N (2011) Fractal dimension of color fractal images. IEEE Trans Image Process 20(1):227–235

    MathSciNet  MATH  Google Scholar 

  39. Nikolaidis NS, Nikolaidis IN, Tsouros CC (2011) A variation of the box-counting algorithm applied to colour images. arXiv preprint arXiv:1107.2336

  40. Nikolaidis NS, Nikolaidis IN (2016) The box-merging implementation of the box-counting algorithm. J Mech Behav Mater 25(1–2):61–67

    MathSciNet  Google Scholar 

  41. Nikolaides J, Aifantis E (2017) Z-Box merging: ultra-fast computation of fractal dimension and lacunarity. In: IEEE 30th international symposium on computer-based medical systems (CBMS), pp 312–317

  42. Nayak SR, Ranganath A, Mishra J (2015) Analysing fractal dimension of color images. In: International conference on computational intelligence and networks (CINE), pp 156–159

  43. Nayak SR, Mishra J (2016) An improved method to estimate the fractal dimension of colour images. Perspect Sci 8:412–416

    Google Scholar 

  44. Zhao X, Wang X (2016) Fractal dimension estimation of RGB color images using maximum color distance. Fractals 24(4):1650040

    Google Scholar 

  45. Zhao X, Wang X (2017) An approach to compute fractal dimension of color images. Fractals 25(1):1750007

    Google Scholar 

  46. Nayak SR, Mishra J, Palai G (2018) An extended DBC approach by using maximum Euclidian distance for fractal dimension of color images. Optik 166:110–115

    Google Scholar 

  47. Barnsley MF, Devaney RL, Mandelbrot BB, Peitgen HO, Saupe D, Voss RF (1988) The science of fractal images. Springer, Berlin

    MATH  Google Scholar 

  48. Dubuc B, Roques-Carmes C, Tricot C, Zucker SW (1987) The variation method: a technique to estimate the fractal dimension of surfaces. In: 1987 Cambridge symposium, pp 241–248

  49. Braun GJ, Fairchild MD, Ebner F (1998) Color gamut mapping in a hue-linearized CIELAB color space. In: Color and imaging conference, vol 1998, no 1, pp 163–168

  50. Murali S, Govindan VK (2013) Shadow detection and removal from a single image using LAB color space. Cybern Inf Technol 13(1):95–103

    MathSciNet  Google Scholar 

  51. Saupe D (1988) Algorithms for random fractals. Springer, Berlin, pp 71–136

    Google Scholar 

  52. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S (2012) SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282

    Google Scholar 

  53. Original Brodatz Texture - Universite de Sherbrooke. http://multibandtexture.recherche.usherbrooke.ca/original_brodatz.html. Accessed 27 July 2019

  54. Key R (1981) Cubic convolution interpolation for digital image processing. IEEE Trans Acoust Speech Signal Process 29(6):1153–1160

    MathSciNet  MATH  Google Scholar 

  55. Azzeh J, Zahran B, Alqadi Z (2018) Salt and pepper noise: effects and removal. JOIV Int J Inform Vis 2(4):252–256

    Google Scholar 

  56. Wang J, Ogawa S (2015) Fractal analysis of colors and shapes for natural and urbanscapes URBANSCAPES. In: ISPRS-international archives of the photogrammetry, remote sensing and spatial information sciences, vol 40, pp 1431–1438

  57. Chen JS, Huertas A, Medioni G (1987) Fast convolution with Laplacian-of-Gaussian masks. IEEE Trans Pattern Anal Mach Intell 4:584–590

    Google Scholar 

  58. Allison PD (1999) Multiple regression: a primer. Pine Forge Press, Newbury Park

    Google Scholar 

  59. Olmos A, Kingdom FAA (2004) A biologically inspired algorithm for the recovery of shading and reflectance images. Perception 33(12):1463–1473

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayan Seal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panigrahy, C., Seal, A. & Mahato, N.K. Fractal dimension of synthesized and natural color images in Lab space. Pattern Anal Applic 23, 819–836 (2020). https://doi.org/10.1007/s10044-019-00839-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-019-00839-7

Keywords

Navigation