Skip to main content
Log in

The modified generic polar harmonic transforms for image representation

  • Theoretical advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

This paper introduces four classes of orthogonal transforms by modifying the generic polar harmonic transforms. Then, the rotation invariant feature of the proposed transforms is investigated. Compared with the traditional generic polar harmonic transforms, the proposed transforms have the ability to describe the central region of the image with a parameter controlling the area of the region. Experimental results verified the image representation capability of the proposed transforms and showed better performance of the proposed transform in terms of rotation invariant pattern recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Flusser J, Suk T (2006) Rotation moment invariants for recognition of symmetric objects. IEEE Trans Image Process 15(12):3784–3790

    Article  MathSciNet  Google Scholar 

  2. J. Flusser, T. Suk, B. Zitova (2009) Moments and moments invariants in pattern recognition. Wiley, Hoboken

  3. Flusser J, Suk T (1993) Pattern recognition by affine moment invariants. Pattern Recogn 26(1):167–174

    Article  MathSciNet  Google Scholar 

  4. Shu HZ, Luo LM, Coatrieux JL (2007) Moment-based approaches in imaging part 1, basic features. IEEE Eng Med Biol Mag 26(5):70–74

    Article  Google Scholar 

  5. Mukundan R, Ramakrishnan KR (1998) Moment functions in image analysis-theory and applications. World Scientific, Singapore

    Book  Google Scholar 

  6. Fu B, Zhou JZ, Li YH, Zhang GJ, Wang C (2007) Image analysis by modified Legendre moments 40(2):691–704

    Google Scholar 

  7. Mukundan R, Ong SH, Lee PA (2001) Image analysis by Tchebichef moments. IEEE Trans Image Process 10(9):1357–1364

    Article  MathSciNet  Google Scholar 

  8. Teague MR (1980) Image analysis via the general theory of moments. J Opt Soc Am 70(8):920–930

    Article  MathSciNet  Google Scholar 

  9. Khotanzad A, Hong YH (1990) Invariant image recognition by Zernike moments. IEEE Trans Pattern Anal Mach Intell 12(5):489–497

    Article  Google Scholar 

  10. Sheng YL, Shen LX (1994) Orthogonal Fourier–Mellin moments for invariant pattern recognition. JOSA A 11(6):1748–1757

    Article  Google Scholar 

  11. Bailey RR, Srinath M (1996) Orthogonal moment features for use with parametric and non-parametric classifiers. IEEE Trans Pattern Anal Mach Intell 18(4):389–399

    Article  Google Scholar 

  12. Ananthraj P, Venkataramana A (2007) Radial Krawtchouk moments for rotational invariant pattern recognition. In: 6th International conference on information, communications and signal processing, pp 1–5

  13. Xiao B, Ma JF, Cui JT (2012) Radial Tchebichef moment invariants for image recognition. J Vis Commun Image Represent 23(2):381–386

    Article  Google Scholar 

  14. Xiao B, Wang GY, Li WS (2014) Radial shifted Legendre moments for image analysis and invariant image recognition. Image Vis Comput 32(12):994–1006

    Article  Google Scholar 

  15. Xiao B, Ma JF, Wang X (2010) Image analysis by Bessel–Fourier moments. Pattern Recogn 43(8):2620–2629

    Article  Google Scholar 

  16. Ping ZL, Wu RG, Sheng YL (2002) Image description with Chebyshev–Fourier moments. J Opt Soc Am A Opt Image Sci Vis 19(9):1748–1754

    Article  MathSciNet  Google Scholar 

  17. Ping ZL, Ren HP, Zou J, Sheng YL, Bo W (2007) Generic orthogonal moments: Jacobi–Fourier moments for invariant image description. Pattern Recogn 40(4):1245–1254

    Article  Google Scholar 

  18. Zhu HQ, Yang Y, Gui ZG, Zhu Y, Chen ZH (2016) Image analysis by generalized Chebyshev–Fourier and generalized pseudo-Jacobi–Fourier moments. Pattern Recogn 51:1–11

    Article  Google Scholar 

  19. Xia T, Zhu HQ, Shu HS, Haigron P, Luo LM (2007) Image description with generalized pseudo-Zernike moments. J Opt Soc Am A Opt Image Sci Vis 24(1):50–59

    Article  Google Scholar 

  20. Zhu HQ, Yang Y, Zhu XL, Gui ZG, Shu HZ (2014) General form for obtaining unit disc-based generalized orthogonal moments. IEEE Trans Image Process 23(12):5455–5469

    Article  MathSciNet  Google Scholar 

  21. Xiao B, Wang GY (2013) Generic radial orthogonal moment invariants for invariant image recognition. J Vis Commun Image Represent 24(7):1002–1008

    Article  Google Scholar 

  22. Dai XB, Liu TL, Shu HZ, Luo LM (2013) Pseudo-Zernike moments invariants to blur degradation and their use in image recognition. Lect Notes Comput Sci 7751:90–97

    Article  Google Scholar 

  23. Shao ZH, Shang YY, Zhang Y, Liu X, Guo G (2016) Robust watermarking using orthogonal Fourier–Mellin moments and chaotic map for double images. Sig Process 120:522–531

    Article  Google Scholar 

  24. Chen BJ, Shu HZ, Zhang H, Goatrieux G, Luo LM, Coatrieux JL (2011) Combined invariants to similarity transformation and to blur using orthogonal Zernike moments. IEEE Trans Image Process 20(2):345–360

    Article  MathSciNet  Google Scholar 

  25. Ren HP, Ping ZL, Bo W, Wu WK, Sheng YL (2003) Multidistortion-invariant image recognition with radial harmonic Fourier moments. J Opt Soc Am A Opt Image Sci Vis 20(4):631–637

    Article  MathSciNet  Google Scholar 

  26. Yap PT, Jiang XD, Kot AC (2010) Two-dimensional polar harmonic transforms for invariant image representation. IEEE Trans Pattern Anal Mach Intell 32(7):1259–1270

    Article  Google Scholar 

  27. Hu HT, Zhang YD, Shao C, Ju Q (2014) Orthogonal moments based on exponent functions: exponent–Fourier moments. Pattern Recogn 47(8):2596–2606

    Article  Google Scholar 

  28. Hoang TV, Tabbone S (2011) Generic polar harmonic transform for invariant image description. In: Proceedings of 18th IEEE international conference on image processing, pp 829–832

  29. Wang CP, Wang XY, Xia ZQ (2016) Geometrically invariant image watermarking based on fast radial harmonic Fourier moments. Signal Process Image Commun 45:10–23

    Article  Google Scholar 

  30. Wang XY, Liu YN, Li S, Yang HY, Niu PP (2016) Robust image watermarking approach using polar harmonic transforms based geometric correction. Neurocomputing 174:627–642

    Article  Google Scholar 

  31. Li LD, Li SS, Abraham A, Pan JS (2012) Geometrically invariant image watermarking using polar harmonic transforms. Inf Sci 199:1–19

    Article  MathSciNet  Google Scholar 

  32. Gan YF (2015) Research on copy-move image forgery detection using features of discrete polar complex exponent transform. Int J Bifurc Chaos 25(14):1540018-1–1540018-15

    Article  Google Scholar 

  33. Li YN (2013) Image copy-move forgery detection based on polar cosine transform and approximate nearest neighbor searching. Forensic Sci Int 224:59–67

    Article  Google Scholar 

  34. Hoang TV, Tabbone S (2014) Generic polar harmonic transforms for invariant image representation. Image Vis Comput 32(8):497–509

    Article  Google Scholar 

  35. Abu-Mostafa YS, Psaltis D (1984) Recognitive aspects of moment invariants. IEEE Trans Pattern Anal Mach Intell 6(6):698–706

    Article  Google Scholar 

  36. Hu HT, Ju Q, Shao C (2016) Errata and comments on “Errata and Comments on orthogonal moments based on exponent functions: exponent–Fourier moments”. Pattern Recogn 52:471–476

    Article  Google Scholar 

  37. Xiao B, Li WS, Wang GY (2015) Errata and comments on “Orthogonal moments based on exponent functions: exponent–Fourier moments”. Pattern Recogn 48(4):1571–1573

    Article  Google Scholar 

  38. https://www1.cs.columbia.edu/CAVE//software/softlib/coil-20.php

  39. https://www.fileformat.info/info/unicode/font/arial_bold

  40. Dai XB, Zhang H, Liu TL, Shu HZ, Luo LM (2014) Legendre moment invariants to blur and affine transformation and their use in image recognition. Pattern Anal Appl 17(2):311–326

    Article  MathSciNet  Google Scholar 

  41. Vedaldi A, Lenc K (2015) MatConvNet—convolutional neural networks for MATLAB. In: Proceedings of the ACM international conference on multimedia

  42. Teh CH, Chin RT (1988) On image analysis by the methods of moments. IEEE Trans Pattern Anal Mach Intell 20(4):496–513

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61601311 and 61876037, Project of Beijing Excellent Talents (No. 2016000020124G088), Beijing Municipal Education Research Plan Project (SQKM201810028018), Project supported by the Natural Science Foundation of Shanxi Province, China (No. 201801D221186), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2017141), and School Foundation of Taiyuan University of Technology (Nos. 2017QN11 and 2017QN12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wu, Y., Shao, Z. et al. The modified generic polar harmonic transforms for image representation. Pattern Anal Applic 23, 785–795 (2020). https://doi.org/10.1007/s10044-019-00840-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-019-00840-0

Keywords

Navigation