Skip to main content
Log in

Scene classification using a new radial basis function classifier and integrated SIFT–LBP features

  • Theoretical advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Scene classification is one of the most significant and challenging tasks in computer vision. This paper presents a new method for scene classification using bag of visual words and a particle swarm optimization (PSO)-based artificial neural network classifier. Contributions of this paper are introducing a novel feature integration method using scale invariant feature transform (SIFT) and local binary pattern (LBP) and a new framework for training radial basis function neural network, combining optimum steepest decent method with a specially designed PSO-based optimizer for center adjustment of radial basis function neural network. Our study shows that using LBP increases the performance of classification task compared to using SIFT only. In addition, our experiments on Proben1 dataset demonstrate improvements in classification performance (averagely about 6.04%) and convergence speed of the proposed radial basis function neural network. The proposed radial basis function neural network is then employed in scene classification task. Results are reported for classification of the Oliva and Torralba, Fei–Fei and Perona and Lazebnik et al. datasets. We compare the performance of the proposed classifier with a multi-way SVM classifier. Experimental results show the superiority of the proposed classifier over the state-of-the-art on the three datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Giveki D, Montazer GA, Soltanshahi MA (2017) Atanassov's intuitionistic fuzzy histon for robust moving object detection. Int J Approximate Reasoning 91:80–95

    Article  MathSciNet  Google Scholar 

  2. Montazer GA, Giveki D (2017) Scene classification using multi-resolution WAHOLB features and neural network classifier. Neural Proc Lett 46(2):681–704

    Article  Google Scholar 

  3. Giveki D, Rastegar H, Karami M (2019) Erratum to: A new neural network classifier based on atanassov's intuitionistic fuzzy set theory. Opt Mem Neural Netw 28(3):237–237

    Article  Google Scholar 

  4. Montazer GA, Giveki D (2015) Content based image retrieval system using clustered scale invariant feature transforms. Optik 126(18):1695–1699

    Article  Google Scholar 

  5. Giveki D, Rastegar H (2019) Designing a new radial basis function neural network by harmony search for diabetes diagnosis. Opt Mem Neural Netw 28(4):321–331

    Article  Google Scholar 

  6. Giveki D, Soltanshahi MA, Montazer GA (2017) A new image feature descriptor for content based image retrieval using scale invariant feature transform and local derivative pattern. Optik 131:242–254

    Article  Google Scholar 

  7. Giveki D, Soltanshahi MA, Shiri F, Tarrah H (2015) A new SIFT-based image descriptor applicable for content-based image retrieval. J Comput Commun 3:66–73

    Article  Google Scholar 

  8. Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554

    Article  MathSciNet  Google Scholar 

  9. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  10. Chan T, Jia K, Gao S, Lu J, Zeng Z, Ma YP (2014) A simple deep learning baseline for image classification? arXiv preprint. arXiv preprint arXiv:14043606

  11. Fan H, Zhou E (2016) Approaching human level facial landmark localization by deep learning. Image Vis Comput 47:27–35

    Article  Google Scholar 

  12. Wang R, Tao D (2016) Non-local auto-encoder with collaborative stabilization for image restoration. IEEE Trans Image Process 25(5):2117–2129

    Article  MathSciNet  Google Scholar 

  13. Tian Y, Luo P, Wang X, Tang X (2015) Deep learning strong parts for pedestrian detection. In: Proceedings of the IEEE international conference on computer vision, pp 1904–1912

  14. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  15. Wang N, Yeung DY (2013). Learning a deep compact image representation for visual tracking. In: Advances in neural information processing systems, pp 809–817

  16. Wang W, Yang X, Ooi BC, Zhang D, Zhuang Y (2016) Effective deep learning-based multi-modal retrieval. VLDB J 25(1):79–101

    Article  Google Scholar 

  17. Zhu Z, Wang X, Bai S, Yao C, Bai X (2016) Deep learning representation using autoencoder for 3D shape retrieval. Neurocomputing 204:41–50

    Article  Google Scholar 

  18. Sun S (2013) A survey of multi-view machine learning. Neural Comput Appl 23(7–8):2031–2038

    Article  Google Scholar 

  19. Xu C, Tao D, Xu C (2013) A survey on multi-view learning. arXiv preprint arXiv:1304.5634

  20. Yu J, Rui Y, Tang YY, Tao D (2014) High-order distance-based multiview stochastic learning in image classification. IEEE Trans Cybernet 44(12):2431–2442

    Article  Google Scholar 

  21. Fathi V, Montazer GA (2013) An improvement in RBF learning algorithm based on PSO for real time applications. Neuro Comput, pp 169–176

  22. Song X, Jiao LC, Yang S, Zhang X, Shang F (2013) Sparse coding and classifier ensemble based multi-instance learning for image categorization. Sig Process 93:1–11

    Article  Google Scholar 

  23. Luo H-L, Wei H, Hu F-X (2011) Improvements in image categorization using codebook ensembles. Image Vis Comput 29:759–773

    Article  Google Scholar 

  24. Kim BS, Park J-Y, Gilbert AC, Savarese S (2013) Hierarchical classification of images by sparse approximation. Image Vis Comput 31:982–991

    Article  Google Scholar 

  25. Zhang C, Liu J, Liang C, Huang Q, Tian Q (2013) Image classification using Harr-like transformation of local features with coding residuals. Sig Process 93:2111–2118

    Article  Google Scholar 

  26. Qin J, Yung NHC (2012) Feature fusion within local region using localized maximum-margin learning for scene categorization. Pattern Recognit 45:1671–1683

    Article  Google Scholar 

  27. Shang L, Xiao B (2012) Discriminative features for image classification and retrieval. Pattern Recognit Lett 33:744–751

    Article  Google Scholar 

  28. Song T, Li H (2013) Wave LBP based hierarchical features for image classification. Pattern Recognit Lett 34:1323–1328

    Article  Google Scholar 

  29. Tian X, Jiao L, Liu X, Zhang X (2014) Feature integration of EODH and color-SIFT: application to image retrieval based on codebook. Sig Process Image Commun 29:530–554

    Article  Google Scholar 

  30. Subrahmanyama M, Maheshwari RP, Balasubramanian R (2012) Local maximum edge binary patterns: a new descriptor for image retrieval and object tracking. Sig Process 92:1467–1479

    Article  Google Scholar 

  31. Lin I-C, Liou C-Y (2007) Least-mean-square training of cluster-weighted modeling. In: Sá JM, Alexandre LA, Duch W, Mandic D (eds) Artificial neural networks—ICANN, vol 4669. Springer, Berlin, pp 301–310

    Google Scholar 

  32. Chen X (2007) Deformation measurement of the large flexible surface by improved RBFNN algorithm and BPNN algorithm. In:

  33. Cancelliere R, Gai M (2003) A comparative analysis of neural network performances in astronomical imaging. Appl Numer Math 45(1):87–98

    Article  Google Scholar 

  34. Montazer GA, Sabzevari R, Khatir HG (2007) Improvement of learning algorithms for RBF neural networks in a helicopter sound identification system. Neurocomputing 71(1–3):167–173

    Article  Google Scholar 

  35. Montazer GA, Sabzevari R, Ghorbani F (2009) Three-phase strategy for the OSD learning method in RBF neural networks. Neurocomputing 72:1797–1802

    Article  Google Scholar 

  36. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  37. Ojala D, Pietikäinen M, Mäenpää T (2002) Multiresolution gray scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24:971–987

    Article  Google Scholar 

  38. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: IEEE computer society conference on computer vision and pattern recognition, volume 2, pp 2169–2178

  39. Prechelt L (1994) Proben1: a set of neural network benchmark problems and benchmarking rules

  40. Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 42(3):145–175

    Article  Google Scholar 

  41. Fei-Fei L, Perona P (2005) A bayesian hierarchical model for learning natural scene categories. In: IEEE computer society conference on computer vision and pattern recognition, vol. 2, pp 524–531

  42. Fan R, Chang K, Hsieh C, Wang X, Lin C (2008) LIBLINEAR: a library for large linear classification. JMLR 9:1871–1874

    MATH  Google Scholar 

  43. van Gemert JC, Geusebroek J-M, Veenman CJ, Smeulders AWM (2008) Kernel codebooks for scene categorization. In: ECCV

  44. Bolovinou A, Pratikakis I, Perantonis S (2013) Bag of spatio-visual words for context inference in scene classification. Pattern Recognit 46(3):1039–1053

    Article  Google Scholar 

  45. Zhang S, Tian Q, Hua G, Huang Q, Gao W (2014) ScenePatchNet: towards scalable and semantic image annotation and retrieval. Comput Vis Image Underst 118:16–29

    Article  Google Scholar 

  46. Qin J, Yung NHC (2010) Scene categorization via contextual visual words. In: Proceedings of the CVPR, vol 43

  47. Wang Y, Gong S (2007) Conditional random field for natural scene image classification. In: Proceedings of the British machine vision conference, Warwick

  48. Qin J, Yung NHC (2010) Scene categorization via contextual visual words. Pattern Recognit 43:1874–1888

    Article  Google Scholar 

  49. Zhou L, Zhou Z, Hu D (2013) Scene classification using a multi-resolution bag-of-features model. Pattern Recognit 46:424–433

    Article  Google Scholar 

  50. Meng X, Wang Z, Wu L (2012) Building global image features for scene recognition. Pattern Recognit 45:373–380

    Article  Google Scholar 

  51. Wang S, Wang Y, Zhu S-C (2013) Hierarchical space tiling for scene modeling. In: Computer vision-ACCV 2012. Springer, Berlin, pp 796–810

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davar Giveki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giveki, D., Karami, M. Scene classification using a new radial basis function classifier and integrated SIFT–LBP features. Pattern Anal Applic 23, 1071–1084 (2020). https://doi.org/10.1007/s10044-020-00868-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-020-00868-7

Keywords

Navigation