Skip to main content
Log in

Automatic clustering based on dynamic parameters harmony search optimization algorithm

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

As a typical unsupervised learning technique, clustering has been widely applied. However, in many cases, prior information about the number of clusters is unknown, so how to determine it automatically in clustering is getting more attention. In this article, a method named automatic clustering based on dynamic parameters harmony search optimization algorithm, i.e., AC-DPHS, is proposed to solve this problem. By improving the basic harmony search (HS), the dynamic parameters harmony search (DPHS) is devised, which makes the parameters change dynamically without pre-definition. The AC-DPHS takes advantage of the merits of both DPHS and K-means clustering and can determine the optimal number of clusters automatically. A comprehensive experiment is carried out to evaluate the performance of AC-DPHS. The results illustrate that the AC-DPHS generated by using the PBM validity index as its fitness function is relatively superior, and it performs over other approaches developed recently in real-life data clustering as well as grayscale images segmentation. Consequently, the method explained in this article is effectiveness and practical, which can be considered as a new automatic clustering scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yza B, Hwa C, Qla B et al (2019) Automatic data clustering using nature-inspired symbiotic organism search algorithm–science direct. Knowl Based Syst 163:546–557

    Article  Google Scholar 

  2. Huang D, Wang CD, Peng H et al (2018) Enhanced ensemble clustering via fast propagation of cluster-wise similarities. IEEE Trans Syst Man Cybern Syst 51(1):508–520

    Article  Google Scholar 

  3. Vali M, Zare M, Razavi S (2021) Automatic clustering-based surrogate-assisted genetic algorithm for groundwater remediation system design. J Hydrol 598:125752

    Article  Google Scholar 

  4. Almannaa MH, Elhenawy M, Rakha HA (2019) A novel supervised clustering algorithm for transportation system applications. IEEE Trans Intell Transp Syst 21(1):222–232

    Article  Google Scholar 

  5. Khanmohammadi S, Adibeig N, Shanehbandy S (2017) An improved overlapping k-means clustering method for medical applications. Expert Syst Appl 67:12–18

    Article  Google Scholar 

  6. Fränti P, Sieranoja S (2019) How much can k-means be improved by using better initialization and repeats? Pattern Recogn 93:95–112

    Article  Google Scholar 

  7. Liang Z, Chen P (2021) An automatic clustering algorithm based on the density-peak framework and Chameleon method. Pattern Recogn Lett 150:40–48

    Article  Google Scholar 

  8. Hao Y, Gwa B, Jga B et al (2020) Self-paced learning for K -means clustering algorithm. Pattern Recogn Lett 132:69–75

    Article  Google Scholar 

  9. Ezugwu AE (2020) Nature-inspired metaheuristic techniques for automatic clustering: a survey and performance study. SN Appl Sci 2(12):1–57

    Google Scholar 

  10. José-García A, Gómez-Flores W (2016) Automatic clustering using nature-inspired metaheuristics: a survey. Appl Soft Comput 41:192–213

    Article  Google Scholar 

  11. Cobos C, Muñoz-Collazos H, Urbano-Muñoz R et al (2014) Clustering of web search results based on the cuckoo search algorithm and balanced bayesian information criterion. Inf Sci 281:248–264

    Article  Google Scholar 

  12. Kumar V, Chhabra JK, Kumar D (2014) Automatic cluster evolution using gravitational search algorithm and its application on image segmentation. Eng Appl Artif Intell 29:93–103

    Article  Google Scholar 

  13. Bandyopadhyay S, Maulik U (2002) Genetic clustering for automatic evolution of clusters and application to image classification. Pattern Recogn 35(6):1197–1208

    Article  MATH  Google Scholar 

  14. Aliniya Z, Mirroshandel SA (2019) A novel combinatorial merge-split approach for automatic clustering using imperialist competitive algorithm. Expert Syst Appl 117:243–266

    Article  Google Scholar 

  15. Dutta D, Sil J, Dutta P (2019) Automatic clustering by multi-objective genetic algorithm with numeric and categorical features. Expert Syst Appl 137:357–379

    Article  Google Scholar 

  16. Saha S, Bandyopadhyay S (2013) A generalized automatic clustering algorithm in a multiobjective framework. Appl Soft Comput 13(1):89–108

    Article  Google Scholar 

  17. Hruschka E, Campello R, Freitas AA et al (2009) A survey of evolutionary algorithms for clustering. IEEE Trans Syst Man Cybern Part C Appl Rev 39(2):133–155

    Article  Google Scholar 

  18. Ozturk C, Hancer E, Karaboga D (2015) Dynamic clustering with improved binary artificial bee colony algorithm. Appl Soft Comput 28:69–80

    Article  Google Scholar 

  19. Masoud H, Jalili S, Hasheminejad SMH (2013) Dynamic clustering using combinatorial particle swarm optimization. Appl Intell 38(3):289–314

    Article  Google Scholar 

  20. Su Z, Wang P, Shen J et al (2012) Automatic fuzzy partitioning approach using variable string length artificial bee colony (VABC) algorithm. Appl Soft Comput 12(11):3421–3441

    Article  Google Scholar 

  21. Das S, Konar A (2009) Automatic image pixel clustering with an improved differential evolution. Appl Soft Comput 9(1):226–236

    Article  Google Scholar 

  22. Liu R, Zhu B, Bian R et al (2015) Dynamic local search based immune automatic clustering algorithm and its applications. Appl Soft Comput 27:250–268

    Article  Google Scholar 

  23. Li H, He F, Chen Y (2020) Learning dynamic simultaneous clustering and classification via automatic differential evolution and firework algorithm. Appl Soft Comput 96:106593

    Article  Google Scholar 

  24. Das S, Abraham A, Konar A (2006) Spatial information based image segmentation using a modified particle swarm optimization algorithm. Sixth international conference on intelligent systems design and applications IEEE, vol 2. pp 438–444

    Google Scholar 

  25. Pan SM, Cheng KS (2007) Evolution-based tabu search approach to automatic clustering. IEEE Trans Syst Man Cybern Part C Appl Rev 37(5):827–838

    Article  Google Scholar 

  26. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  27. Zhao F, Qin S, Yang G et al (2018) A differential-based harmony search algorithm with variable neighborhood search for job shop scheduling problem and its runtime analysis. IEEE Access 6:76313–76330

    Article  Google Scholar 

  28. Maroosi A, Muniyandi RC, Sundararajan E et al (2016) A parallel membrane inspired harmony search for optimization problems: a case study based on a flexible job shop scheduling problem. Appl Soft Comput 49:120–136

    Article  Google Scholar 

  29. Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579

    MathSciNet  MATH  Google Scholar 

  30. Khalili M, Kharrat R, Salahshoor K et al (2014) Global dynamic harmony search algorithm: GDHS. Appl Math Comput 228:195–219

    MathSciNet  MATH  Google Scholar 

  31. Kumar V, Chhabra JK, Kumar D (2014) Parameter adaptive harmony search algorithm for unimodal and multimodal optimization problems. J Comput Sci 5(2):144–155

    Article  MathSciNet  Google Scholar 

  32. Omran MGH, Mahdavi M (2008) Global-best harmony search. Appl Math Comput 198(2):643–656

    MathSciNet  MATH  Google Scholar 

  33. Ouyang H, Gao L, Li S et al (2015) Improved novel global harmony search with a new relaxation method for reliability optimization problems. Inf Sci 305:14–55

    Article  Google Scholar 

  34. Ouyang H, Gao L, Li S et al (2017) Improved harmony search algorithm: LHS. Appl Soft Comput 53:133–167

    Article  Google Scholar 

  35. Abedinpourshotorban H, Hasan S, Shamsuddin SM et al (2016) A differential-based harmony search algorithm for the optimization of continuous problems. Expert Syst Appl 62:317–332

    Article  Google Scholar 

  36. Assad A, Deep K (2018) A hybrid harmony search and simulated annealing algorithm for continuous optimization. Inf Sci 450:246–266

    Article  Google Scholar 

  37. Cobos C, León E, Mendoza M (2010) A harmony search algorithm for clustering with feature selection. Rev Fac Ing Univ Antioq 55:153–164

    Google Scholar 

  38. Amiri B, Hossain L, Mosavi SE (2010) Application of harmony search algorithm on clustering. Proc World Congr Eng Comput Sci 1:20–22

    Google Scholar 

  39. Kumar V, Chhabra JK, Kumar D (2016) Automatic data clustering using parameter adaptive harmony search algorithm and its application to image segmentation. J Intell Syst 25(4):595–610

    Article  Google Scholar 

  40. Talaei K, Rahati A, Idoumghar L (2020) A novel harmony search algorithm and its application to data clustering. Appl Soft Comput 92:106273

    Article  Google Scholar 

  41. Saha J, Mukherjee J (2021) CNAK: cluster number assisted K-means. Pattern Recognit 110:107625

    Article  Google Scholar 

  42. Ghezelbash R, Maghsoudi A, Carranza EJM (2020) Optimization of geochemical anomaly detection using a novel genetic K-means clustering (GKMC) algorithm. Comput Geosci 134:104335

    Article  Google Scholar 

  43. Zhao X, Liu Z, Hao J, Li R, Zuo X (2017) Semi-self-adaptive harmony search algorithm. Nat Comput 16(4):619–636

    Article  MathSciNet  Google Scholar 

  44. Geem ZW, Sim KB (2010) Parameter-setting-free harmony search algorithm. Appl Math Comput 217(8):3881–3889

    MathSciNet  MATH  Google Scholar 

  45. Luo K, Ma J, Zhao Q (2019) Enhanced self-adaptive global-best harmony search without any extra statistic and external archive. Inf Sci 482:228–247

    Article  Google Scholar 

  46. Cheng MY, Prayogo D, Wu YW et al (2016) A hybrid harmony search algorithm for discrete sizing optimization of truss structure. Autom Constr 69:21–33

    Article  Google Scholar 

  47. Elattar EE (2018) Modified harmony search algorithm for combined economic emission dispatch of microgrid incorporating renewable sources. Energy 159:496–507

    Article  Google Scholar 

  48. Chen J, Pan Q, Li J (2012) Harmony search algorithm with dynamic control parameters. Appl Math Comput 219(2):592–604

    MathSciNet  MATH  Google Scholar 

  49. Zhu Q, Tang X, Li Y et al (2020) An improved differential-based harmony search algorithm with linear dynamic domain. Knowl Based Syst 187:104809

    Article  Google Scholar 

  50. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73

    Article  Google Scholar 

  51. Xue-Ling JI, Ming LI, Wei LI (2011) Constriction factor particle swarm optimization algorithm with overcoming local optimum. Comput Eng 37(20):213–215

    Google Scholar 

  52. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 2:224–227

    Article  Google Scholar 

  53. Qin Xu, Zhang Q, Liu J, Luo B (2020) Efficient synthetical clustering validity indexes for hierarchical clustering. Expert Syst Appl 151:113367

    Article  Google Scholar 

  54. Pakhira MK, Bandyopadhyay S, Maulik U (2004) Validity index for crisp and fuzzy clusters. Pattern Recogn 37(3):487–501

    Article  MATH  Google Scholar 

  55. Niknam T, Amiri B (2010) An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis. Appl Soft Comput 10(1):183–197

    Article  Google Scholar 

  56. UCI, Ucidatasets[online]. URL:http://www.ics.uci.edu/∼mlearn/MLRepository.html

  57. Aliniya Z, Mirroshandel SA (2019) A novel combinatorial merge-split approach for automatic clustering using imperialist competitive algorithm. Expert Syst Appl 117:243–266

    Article  Google Scholar 

  58. Lei J, Jiang T, Kui W, Haizhou D, Zhu G, Wang Z (2016) Robust K -means algorithm with automatically splitting and merging clusters and its applications for surveillance data. Multimed Tools Appl 75(19):12043–12059

    Article  Google Scholar 

  59. Das S, Abraham A, Konar A (2007) Automatic clustering using an improved differential evolution algorithm. IEEE Trans Syst Man Cybern Part A Syst Hum 38(1):218–237

    Article  Google Scholar 

  60. Omran MGH, Salman A, Engelbrecht AP (2006) Dynamic clustering using particle swarm optimization with application in image segmentation. Pattern Anal Appl 8(4):332–344

    Article  MathSciNet  Google Scholar 

  61. Peng H, Luo X, Gao Z et al (2015) A novel clustering algorithm inspired by membrane computing. Sci World J 2015:929471

    Article  Google Scholar 

  62. Chen JX, Gong YJ, Chen WN et al (2019) Elastic differential evolution for automatic data clustering. IEEE Trans Cybern 99:1–14

    Google Scholar 

  63. Mousavirad SJ, Ebrahimpour-Komleh H, Schaefer G (2020) Automatic clustering using a local search-based human mental search algorithm for image segmentation. Appl Soft Comput 96:106604

    Article  Google Scholar 

Download references

Acknowledgements

The thesis is supported in part by the Project of Research on Ship-shore integrated Information System Technology of Green Intelligent Ships in Inland Rivers (Grant MC-202002-C01-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangmeng Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Tang, X. & Elahi, A. Automatic clustering based on dynamic parameters harmony search optimization algorithm. Pattern Anal Applic 25, 693–709 (2022). https://doi.org/10.1007/s10044-022-01065-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-022-01065-4

Keywords

Navigation