Skip to main content
Log in

Virtual reality software package for implementing motor learning and rehabilitation experiments

  • Original Article
  • Published:
Virtual Reality Aims and scope Submit manuscript

Abstract

Virtual reality games for rehabilitation are attracting increasing growth. In particular, there is a demand for games that allow therapists to identify an individual’s difficulties and customize the control of variables, such as speed, size, distance, as well as visual and auditory feedback. This study presents and describes a virtual reality software package (Bridge Games) to promote rehabilitation of individuals living with disabilities and highlights preliminary researches of its use for implementing motor learning and rehabilitation. First, the study presents seven games in the software package that can be chosen by the rehabilitation team, considering the patient’s needs. All game characteristics are described including name, function presentation, objective and valuable measurements for rehabilitation. Second, preliminary results illustrate some applications of two games, considering 343 people with various disabilities and health status. Based on the results, in the Coincident Timing game, there was a main effect of movement sensor type (in this instance the most functional device was the keyboard when compared with Kinect and touch screen) on average time reached by sample analyzed, F(2, 225) = 4.42, p < 0.05. Similarly, in the Challenge! game, a main effect was found for movement sensor type. However, in this case, touch screen provided better performance than Kinect and Leap Motion, F(2, 709) = 5.90, p < 0.01. Thus, Bridge Games is a possible software game to quantify motor learning. Moreover, the findings suggest that motor skills might be practiced differently depending on the environmental interface in which the game may be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson F, Annett M, Bischof WF (2010) Lean on Wii: physical rehabilitation with virtual reality Wii peripherals. Stud Health Technol Inform 154:229–234. doi:10.3233/978-1-60750-561-7-229

    Google Scholar 

  • Anderson KR, Woodbury ML, Phillips K, Gauthier LV (2015) Virtual reality video games to promote movement recovery in stroke rehabilitation: a guide for clinicians. Arch Phys Med Rehabil 96(5):973–976. doi:10.1016/j.apmr.2014.09.008

    Article  Google Scholar 

  • Antunes TPC, de Oliveira ASB, Crocetta TB, Antao J, Barbosa RTD, Guarnieri R, Massetti T, Monteiro CBD, de Abreu LCs (2017) Computer classes and games in virtual reality environment to reduce loneliness among students of an elderly reference center Study protocol for a randomised cross-over design. Medicine 96(10):e5954. doi:10.1016/j.apmr.2014.09.008 

    Article  Google Scholar 

  • Bieryla KA (2016) Xbox Kinect training to improve clinical measures of balance in older adults: a pilot study. Aging Clin Exp Res 28:451–457. doi:10.1007/s40520-015-0452-y

    Article  Google Scholar 

  • Bonnechere B, Jansen B, Omelina L, Sholukha V, Jan SV (2017) Patients’ follow-up using biomechanical analysis of rehabilitation exercises. Int J Serious Games 4(1):3–13. doi:10.17083/ijsg.v4i1.121

    Article  Google Scholar 

  • Crabtree DA, Antrim LR (1988) Guidelines for measuring reaction-time. Percept Mot Skills 66(2):363–370

    Article  Google Scholar 

  • Crocetta TB, Andrade A (2015) Retrasos en la medición del tiempo con el uso de computadoras en la investigación del Tiempo de Reacción: Una revisión sistemática. Revista de Psicología del Deporte 24:341–349

    Google Scholar 

  • Crocetta TB, Oliveira SRD, Liz CMD, Andrade A (2015) Virtual and augmented reality technologies in human performance: a review. Fisioterapia em Movimento 28(4):823–835. doi:10.1590/0103-5150.028.004.ar01

    Article  Google Scholar 

  • Da Gama A, Chaves T, Figueiredo L, Teichrieb V (2012) Guidance and movement correction based on therapeutics movements for motor rehabilitation support systems. 14th symposium on virtual and augmented reality (SVR), 2012. IEEE, pp 191–200

  • da Silva TD, de Monteiro CBM, Corrêa AGD, Alonso AC, Greve JMDA (2015) Realidade Virtual na Paralisia Cerebral - Definição Tipos e Possibilidades de Intervenção. In: da Monteiro CBM, de Abreu LC, Valenti VE (eds) Paralisia Cerebral - Teoria e Prática. São Paulo, Plêiade, p 484

    Google Scholar 

  • Herrero D, Crocetta T, Massetti T, de Moraes I, Trevizan I, Guarnieri R (2015) Total reaction time performance of individuals with autism after a virtual reality task. IJN an open access journal 2(2376–0281):1000189. doi:10.4172/2376-0281.1000189

    Google Scholar 

  • Hocine N, Gouaich A, Cerri SA, Mottet D, Froger J, Laffont I (2015) Adaptation in serious games for upper-limb rehabilitation: an approach to improve training outcomes. User Model User-Adap Inter 25(1):65–98. doi:10.1007/s11257-015-9154-6

    Article  Google Scholar 

  • Hondori HM, Khademi M (2014) A review on technical and clinical impact of microsoft kinect on physical therapy and rehabilitation. J Med Eng 2014:846514

    Google Scholar 

  • Hondori HM, Khademi M, Dodakian L, McKenzie A, Lopes CV, Cramer SC (2016) Choice of human–computer interaction mode in stroke rehabilitation. Neurorehabilitation Neural Repair 30(3):258–265. doi:10.1177/1545968315593805

    Article  Google Scholar 

  • Iwasaki Y, Kinoshita M, Ikeda K, Takamiya K, Shiojima T (1990) Cognitive impairment in amyotrophic lateral sclerosis and its relation to motor disabilities. Acta Neurol Scand 81(2):141–143

    Article  Google Scholar 

  • Juanes JA, Gomez JJ, Peguero PD, Ruisoto P (2016) Digital environment for movement control in surgical skill training. J Med Syst 40(6):133. doi:10.1007/s10916-016-0495-4

    Article  Google Scholar 

  • Kim R, Nauhaus G, Glazek K, Young D, Lin S (2013) Development of coincidence-anticipation timing in a catching task. Percept Mot Skills 117(1):319–338. doi:10.2466/10.23.PMS.117x17z9

    Article  Google Scholar 

  • Levac D, Espy D, Fox E, Pradhan S, Deutsch JE (2015) “Kinect-ing” with clinicians: a knowledge translation resource to support decision making about video game use in rehabilitation. Phys Ther 95(3):426–440. doi:10.2522/ptj.20130618

    Article  Google Scholar 

  • Lohse K, Shirzad N, Verster A, Hodges N, Van der Loos HFM (2013) Video games and rehabilitation: using design principles to enhance engagement in physical therapy. J Neurol Phys Ther 37(4):166–175. doi:10.1097/npt.0000000000000017

    Article  Google Scholar 

  • Lv ZH, Penades V, Blasco S, Chirivella J, Gagliardo P (2016) Evaluation of Kinect2 based balance measurement. Neurocomputing 208:290–298. doi:10.1016/j.neucom.2015.12.128

    Article  Google Scholar 

  • Malheiros SR, da Silva TD, Favero FM, de Abreu LC, Fregni F, Ribeiro DC, de Mello Monteiro CB (2016) Computer task performance by subjects with Duchenne muscular dystrophy. Neuropsychiatr Dis Treat 12:41–48. doi:10.2147/NDT.S87735

    Google Scholar 

  • Microsoft (2015) Timer class—.NET framework 4.6 and 4.5. In: Library, N. F. C., (ed) Microsoft Corporation. https://msdn.microsoft.com/en-us/library/system.threading.timer(v=vs.110).aspx. Accessed sept 2015

  • Monteiro CBM, Massetti T, da Silva TD, van der Kamp J, de Abreu LC, Leone C, Savelsbergh GJ (2014) Transfer of motor learning from virtual to natural environments in individuals with cerebral palsy. Res Dev Disabil 35(10):2430–2437. doi:10.1016/j.ridd.2014.06.006

    Article  Google Scholar 

  • Monteiro CBD, da Silva TD, de Abreu LC, Fregni F, de Araujo LV, Ferreira F, Leone C (2017) Short-term motor learning through nonimmersive virtual reality task in individuals with down syndrome. BMC Neurol 17:71. doi:10.1186/s12883-017-0852-z

    Article  Google Scholar 

  • Nooijen CFJ, de Groot JF, Stam HJ, van den Berg-Emons RJG, Bussmann HBJ, Fit Future C (2015) Validation of an activity monitor for children who are partly or completely wheelchair-dependent. J Neuroeng Rehabil 12:11. doi:10.1186/s12984-015-0004-x

    Article  Google Scholar 

  • Pastor I, Hayes HA, Bamberg SJM, IEEE (2012) A feasibility study of an upper limb rehabilitation system using kinect and computer games. 34th annual international conference of the IEEE engineering-in-medicine-and-biology-society (EMBS). San Diego, pp 1286–1289

  • Patrizia M, Claudio M, Leonardo G, Alessandro P, IEEE (2009) A robotic toy for children with special needs: from requirements to design 11th IEEE international conference on rehabilitation robotics. Kyoto, p 1070

  • Rodrigues PC, Vasconcelos O, Barreiros J, Barbosa R, Trifilio F (2009) Functional asymmetry in a simple coincidence-anticipation task: effects of handedness. Eur J Sport Sci 9(2):115–123. doi:10.1080/17461390802603903

    Article  Google Scholar 

  • Stanmore E, Stubbs B, Vancampfort D, de Bruin ED, Firth J (2017) The effect of active video games on cognitive functioning in clinical and non-clinical populations: a meta-analysis of randomized controlled trials. Neurosci Biobehav Rev 78:34–43. doi:10.1016/j.neubiorev.2017.04.011

    Article  Google Scholar 

  • Thomson K, Pollock A, Bugge C, Brady M (2014) Commercial gaming devices for stroke upper limb rehabilitation: a systematic review. Int J Stroke 9(4):479–488. doi:10.1111/ijs.12263

    Article  Google Scholar 

Download references

Acknowledgements

The author TBC gratefully acknowledge grant financial support from UNIEDU Post graduation Program, Santa Catarina State, Brazil.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the acquisition of data and revision of the manuscript. All authors determined the design, interpreted the data and drafted the manuscript. All authors read and gave final approval for the version submitted for publication.

Corresponding author

Correspondence to Tânia Brusque Crocetta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crocetta, T.B., de Araújo, L.V., Guarnieri, R. et al. Virtual reality software package for implementing motor learning and rehabilitation experiments. Virtual Reality 22, 199–209 (2018). https://doi.org/10.1007/s10055-017-0323-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10055-017-0323-2

Keywords

Navigation