Skip to main content
Log in

Inverse optimization: towards the optimal parameter set of inverse LP with interval coefficients

  • Original Paper
  • Published:
Central European Journal of Operations Research Aims and scope Submit manuscript

Abstract

We study the inverse optimization problem in the following formulation: given a family of parametrized optimization problems and a real number called demand, determine for which values of parameters the optimal value of the objective function equals to the demand. We formulate general questions and problems about the optimal parameter set and the optimal value function. Then we turn our attention to the case of linear programming, when parameters can be selected from given intervals (“inverse interval LP”). We prove that the problem is NP-hard not only in general, but even in a very special case. We inspect three special cases—the case when parameters appear in the right-hand sides, the case when parameters appear in the objective function, and the case when parameters appear in both the right-hand sides and the objective function. We design a technique based on parametric programming, which allows us to inspect the optimal parameter set. We illustrate the theory by examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Recall Example C from Sect. 1.2: we are to find a payoff matrix \(A \in \varTheta \) to achieve a prescribed game value. Assume that in addition, a fixed matrix \(A_0\) is given. For \(A, A' \in \varTheta ^*\), define \(A \le ^* A'\) iff \(\Vert A - A_0\Vert \ge \Vert A' - A_0\Vert \), where \(\Vert \cdot \Vert \) is a matrix norm. This problem can be read as follows: find a payoff matrix such to achieve the prescribed game value, and if the solution is not unique, then find the solution which differs from the reference game \(A_0\) as little as possible.

  2. This leads us to computational geometry, where the process or replacement of an intricate set A by another simpler object approximating A in some well defined sense is referred to as “geometric rounding” of A.

References

  • Ahmed S, Guan Y (2005) The inverse optimal value problem. Math Program 102(1):91–110

    Article  Google Scholar 

  • Ahuja RK, Orlin JB (2001) Inverse optimization. Oper Res 49(5):771–783

    Article  Google Scholar 

  • Alefeld G, Herzberger J (1983) Introduction to interval computations. Academic Press, New York

    Google Scholar 

  • Bhurjee A, Panda G (2012) Efficient solution of interval optimization problem. Math Methods Oper Res 76(3):273–288

    Article  Google Scholar 

  • Bozóki K, Fülöp J, Poesz A (2011) On pairwise comparison matrices that can be made consistent by the modification of a few elements. Cent Eur J Oper Res 19(2):157–175

    Article  Google Scholar 

  • Bozóki K, Fülöp J, Rónyai L (2010) On optimal completions of incomplete pairwise comparison matrices. Math Comput Model 52(1–2):318–333

    Article  Google Scholar 

  • Černý M (2015) Decision making based on linear programming: can a small error in input data lead to a highly suboptimal decision? In: Proceedings of SMSIS 2015: 11th international conference strategic management and its support by information systems, VŠB-TU Ostrava/Uherské Hradiště

  • Černý M (2015) A note on the matrix casino problem. In: Proceedings of HED 2015: Hradec economic days, volume IV, Gaudeamus, Hradec Králové, pp. 63–70

  • Fiedler M, Nedoma J, Ramík J, Rohn J, Zimmermann K (2006) Linear optimization problems with inexact data. Springer, New York

    Google Scholar 

  • Gabrel V, Murat C, Remli N (2010) Linear programming with interval right hand sides. Int Trans Oper Res 17(3):397–408

    Article  Google Scholar 

  • Gal T (1979) Postoptimal analyses, parametric programming, and related topics. McGraw-Hill, New York

    Google Scholar 

  • Gal T, Greenberg HJ (eds) (1997) Advances in sensitivity analysis and parametric programming. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Hladík M (2010) Multiparametric linear programming: support set and optimal partition invariancy. Eur J Oper Res 202(1):25–31

    Article  Google Scholar 

  • Hladík M (2011) Optimal value bounds in nonlinear programming with interval data. TOP 19(1):93–106

    Article  Google Scholar 

  • Hladík M (2012) Interval linear programming: a survey. In: Mann ZA (ed) Linear programming—New Frontiers in theory and applications. Nova Science Publishers, New York, pp 85–120 (chap. 2)

    Google Scholar 

  • Hladík M (2013) Weak and strong solvability of interval linear systems of equations and inequalities. Linear Algebra Appl 438(11):4156–4165

    Article  Google Scholar 

  • Hladík M (2014) How to determine basis stability in interval linear programming. Optim Lett 8(1):375–389

    Article  Google Scholar 

  • Hladík M (2014) On approximation of the best case optimal value in interval linear programming. Optim Lett 8(7):1985–1997

    Article  Google Scholar 

  • Karmakar S, Bhunia AK (2014) Uncertain constrained optimization by interval-oriented algorithm. J Oper Res Soc 65(1):73–87

    Article  Google Scholar 

  • Li W, Luo J, Wang Q, Li Y (2014) Checking weak optimality of the solution to linear programming with interval right-hand side. Optim Lett 8(4):1287–1299

    Article  Google Scholar 

  • Luo J, Li W, Wang Q (2014) Checking strong optimality of interval linear programming with inequality constraints and nonnegative constraints. J Comput Appl Math 260:180–190

    Article  Google Scholar 

  • Moore RE, Kearfott RB, Cloud MJ (2009) Introduction to interval analysis. SIAM, Philadelphia

    Book  Google Scholar 

  • Mostafaee A, Hladík M, Černý M (2015) Inverse linear programming with interval coefficients. Submitted (2015). http://nb.vse.cz/~cernym/invp.pdf

  • Neumaier A (1990) Interval methods for systems of equations. Cambridge University Press, Cambridge

    Google Scholar 

  • Nožička F, Guddat J, Hollatz H, Bank B (1974) Theorie der linearen parametrischen optimierung. Akademie-Verlag, Berlin

    Google Scholar 

  • Wets RJB (1985) On the continuity of the value of a linear program and of related polyhedral-valued multifunctions. Math Program Study 24:14–29

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Černý.

Ethics declarations

Conflict of interest

None.

Ethical standard

The research involves neither animals nor human participants.

Additional information

The work of both authors was supported by the Czech Science Foundation under Grant P403/12/1947.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Černý, M., Hladík, M. Inverse optimization: towards the optimal parameter set of inverse LP with interval coefficients. Cent Eur J Oper Res 24, 747–762 (2016). https://doi.org/10.1007/s10100-015-0402-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10100-015-0402-y

Keywords

Navigation