Skip to main content
Log in

On the identification of degenerate indices in the nonlinear complementarity problem with the proximal point algorithm

  • Published:
Mathematical Programming Submit manuscript

Abstract.

In this paper we focus on the problem of identifying the index sets P(x):={i|x i >0}, N(x):={i|F i (x)>0} and C(x):={i|x i =F i (x)=0} for a solution x of the monotone nonlinear complementarity problem NCP(F). The correct identification of these sets is important from both theoretical and practical points of view. Such an identification enables us to remove complementarity conditions from the NCP and locally reduce the NCP to a system which can be dealt with more easily. We present a new technique that utilizes a sequence generated by the proximal point algorithm (PPA). Using the superlinear convergence property of PPA, we show that the proposed technique can identify the correct index sets without assuming the nondegeneracy and the local uniqueness of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Billups, S.C.: Improving the robustness of descent-based methods for semismooth equations using proximal perturbations. Math. Program. 87, 269–284 (2000)

    Google Scholar 

  2. Bongartz, I., Conn, A.R., Gould, N., Toint, Ph.L.: CUTE: Constrained and unconstrained testing environment. ACM Trans. Math. Softw. 21, 123–160 (1995)

    Article  MATH  Google Scholar 

  3. El-Bakry, A.S., Tapia, R.A., Zhang, Y.: A study of indicators for identifying zero variables in interior-point methods. SIAM Rev. 36, 45–72 (1994)

    MathSciNet  MATH  Google Scholar 

  4. El-Bakry, A.S., Tapia, R.A., Zhang, Y.: On the convergence rate of Newton interior-point methods in the absence of strict complementarity. Comput. Optim. Appl. 6, 157–167 (1996)

    MathSciNet  MATH  Google Scholar 

  5. De Luca, T., Facchinei, F., Kanzow, C.: A semismooth equation approach to the solution of nonlinear complementarity problems. Math. Program. 75, 407–439 (1996)

    Article  Google Scholar 

  6. Facchinei, F., Fischer, A., Kanzow, C.: On the accurate identification of active constraints. SIAM J. Optim. 9, 14–32 (1998)

    Article  MATH  Google Scholar 

  7. Facchinei, F., Fischer, A., Kanzow, C.: On the identification of zero variables in an interior-point framework. SIAM J. Optim. 10, 1058–1078 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fischer, A.: A special Newton-type optimization method. Optimization 24, 153–176 (1992)

    Google Scholar 

  9. Fischer, A.: An NCP-function and its use for the solution of complementarity problems. In: Du, D.Z., Qi, L., Womersley, R.S. (eds.), Recent Advances in Nonsmooth Optimization, World Scientific, Singapore, 1995, pp. 88–105

  10. Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes. Lect. Notes in Econ. Math. Syst. 187, Springer-Verlag, Berlin, 1981

  11. Jiang, H.: Global convergence analysis of the generalized Newton and Gauss-Newton methods of the Fischer-Burmeister equation for the complementarity problem. Math. Oper. Res. 24, 529–543 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Kojima, M., Shindo, S.: Extensions of Newton and quasi-Newton methods to systems of PC 1 equations. J. Oper. Res. Soc. Japan 29, 352–374 (1986)

    MathSciNet  MATH  Google Scholar 

  13. Luo, Z.-Q., Mangasarian, O.L., Ren, J., Solodov, M.V.: New error bounds for the linear complementarity problem. Math. Oper. Res. 19, 880–892 (1994)

    MathSciNet  MATH  Google Scholar 

  14. Pang, J.-S.: A posteriori error bounds for the linearly–constrained variational inequality problem. Math. Oper. Res. 12, 474–484 (1987)

    MathSciNet  Google Scholar 

  15. Robinson, S.M.: Some continuity properties of polyhedral multifunctions. Math. Program. Study 14, 206–214 (1981)

    MathSciNet  MATH  Google Scholar 

  16. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optimization 14, 877–898 (1976)

    MATH  Google Scholar 

  17. Stoer, J., Wechs, M., Mizuno, S.: High order infeasible-interior-point methods for sufficient linear complementarity problems. Math. Oper. Res. 23, 832–862 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Yamashita, N., Fukushima M.: Modified Newton methods for solving a semismooth reformulation of monotone complementarity problems. Math. Program. 76, 469–491 (1997)

    Article  MathSciNet  Google Scholar 

  19. Yamashita, N., Fukushima M.: The proximal point algorithm with genuine superlinear convergence for the monotone complementarity problem. SIAM J. Optim. 11, 364–379 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuo Yamashita.

Additional information

Mathematics Subject Classification (2000): 90C33, 65K10

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan.

Received:22 Ferbuary 2001

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, N., Dan, H. & Fukushima, M. On the identification of degenerate indices in the nonlinear complementarity problem with the proximal point algorithm. Math. Program., Ser. A 99, 377–397 (2004). https://doi.org/10.1007/s10107-003-0455-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-003-0455-x

Keywords

Navigation