Skip to main content
Log in

Computational study of large-scale p-Median problems

  • Published:
Mathematical Programming Submit manuscript

Abstract

Given a directed graph G(V,A), the p-Median problem consists of determining p nodes (the median nodes) minimizing the total distance from the other nodes of the graph. We present a Branch-and-Cut-and-Price algorithm yielding provably good solutions for instances with |V|≤3795. Key ingredients of the algorithm are a delayed column-and-row generation technique, exploiting the special structure of the formulation, to solve the LP-relaxation, and cutting planes to strengthen the formulation and limit the size of the enumeration tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. OR–Library. Available at the web address http://mscmga.ms.ic.ac.uk/info.html.

  2. Tsplib. Available at the web address http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.

  3. Avella, P., Sassano, A.: On the p-median polytope. Mathematical Programming, 89, 395–411 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barahona, F., Anbil, R.: The volume algorithm: producing primal solutions with a subgradient algorithm. Mathematical Programming, 87, 385–399 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barahona, F., Chudak, F.: Solving large scale uncapacitated facility location problems. In: Pardalos, P. (ed.), Approximation and Complexity in Numerical Optimization, pp. 48–62, 2000

  6. Beasley, J.E.: A note on solving large scale p-median problems. EJOR, 21, 270–273 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Beasley, J.E.: Lagrangean heuristics for location problems. EJOR, 65, 383–399 (1993)

    Article  MATH  Google Scholar 

  8. Bradley, P.S., Mangasarian, O.L.: Feature selection via concave minimization and support vector machines. In: Shavlik, J. (ed.), Machine Learning Proceedings of the Fifteenth International Conference (ICML'98), San Francisco, California, pp. 82–90, 1998

  9. Briant, O., Naddef, D.: The optimal diversity management problem. accepted at Operations Research, 52 (4), (2004)

  10. Chiyoshi, F., Galvao, D.: A statistical analysis of simulated annealing applied to the p-median problem. Annals of Operations Research, 96, 61–74 (2000)

    Article  MATH  Google Scholar 

  11. Christofides, N., Beasley, J.E.: A tree search algorithm for the p-median problem. EJOR, 10, 196–204 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chudak, F.A.: Improved approximation algorithms for the uncapacitated facility location problem. PhD thesis, Cornell University, 1998

  13. Cornuejols, G., Fisher, M.L., Nemhauser, G.L.: Location of bank accounts to optimize float : An analytic study of exact and approximate algorithms. Management Science, 23, 789–810 (1977)

    MATH  MathSciNet  Google Scholar 

  14. Correa, E.S., Steiner, M.T.A., Freitas, A.A., Carnieri, C.: A genetic algorithm for the p-median problem. In: Procedings of 2001 Genetic and Evolutionary Computation Conf. (GECCO-2001), pp. 1268–1275, 2001

  15. Crainic, T.G., Gendreau, M., Hansen, P., Mladenovic, N.: Cooperative parallel variable neighborhood search for the p-median. Journal of Heuristics, 10 (3), 293–314 (2004)

    Article  Google Scholar 

  16. du Merle, O., Villeneuve, D., Desrosiers, J., Hansen, P.: Stabilized column generation. discrete mathematics. Discrete Mathematics, 194, 229–237 (1999)

    MATH  Google Scholar 

  17. Erkut, E., Bozkaya, B., Zhang, J.: An effective genetic algorithm for the p-median problem. Paper presented at INFORMS conference in Dallas, 1997

  18. Fung, G., Mangasarian, O.L.: Semi-supervised support vector machines for unlabeled data classification. Optimization Methods and Software, 1 (15), 29–44 (2000)

    Google Scholar 

  19. Galvao, R.D.: A dual-bounded algorithm for the p-median problem, operations research. Operations Research, 28, 1112–1121 (1980)

    MATH  MathSciNet  Google Scholar 

  20. Garcia-Lopez, F., Melian-Batista, B., Moreno-Perez, J.A., Moreno-Vega, J.M.: The parallel variable neighborhood search for the p-median problem. Journal of Heuristics, 8 (3), 375–388 (2002)

    Article  Google Scholar 

  21. Garcia-Lopez, F., Melian-Batista, B., Moreno-Perez, J.A., Moreno-Vega, J.M.: Parallelization of the scatter search for the p-median problem. Parallel Computing, 29 (3), 575–589 (2003)

    Article  Google Scholar 

  22. Garfinkel, R.S., Neebe, A.W., Rao, M.R.: An algorithm for the m-median plant location problem. Transportation Science, 25, 183–187 (1974)

    MathSciNet  Google Scholar 

  23. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin Heidelberg New York, 1993

  24. Hansen, P., Jaumard, B.: Cluster analysis and mathematical programming. Mathematical Programming, 79, 191–215 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hansen, P., Mladenovic, N.: Variable neighbourhood search for the p-median. Location Science, 5, 207–226 (1997)

    Article  MATH  Google Scholar 

  26. Hansen, P., Mladenovic, N., Perez-Brito, D.: Variable neighbourhood decomposition search. Journal of Heuristics, 7, 335–350 (2001)

    Article  MATH  Google Scholar 

  27. Hoffman, K., Padberg, M.: Solving airline crew scheduling problems by branch-and-cut. Management Science, 39 (6), 657–682 (1993)

    Google Scholar 

  28. Hosage, C.M., Goodchild, M.F.: Discrete space location-allocation solutions from genetic algorithms. Annals of Operational Research, 6, 35–46 (1986)

    Article  Google Scholar 

  29. Kariv, O., Hakimi, L.: An algorithmic approach to network location problems. ii: the p-medians. Operations Research, 37 (3), 539–560 (1979)

    MathSciNet  Google Scholar 

  30. Mannino, C., Sassano, A.: An exact algorithm for the maximum stable set problem. Computational Optimization and Applications, 3 (4), 243–258 (1994)

    Article  MathSciNet  Google Scholar 

  31. Mirchandani, P.B., Oudjit, A., Wong, R.T.: Multidimensional extensions and a nested dual approach for the m-median problem. EJOR, 21, 121–137 (1995)

    Article  MathSciNet  Google Scholar 

  32. Mulvey, J.M., Crowder, H.P.: Cluster analysis: an application of lagrangian relaxation. Management Science, 25, 329–340 (1979)

    MATH  Google Scholar 

  33. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Willey, 1988

  34. Rao, M.R.: Cluster analysis and mathematical programming. Journal of the American Statistical Association, 6, 622–626 (1971)

    Article  Google Scholar 

  35. Resende, M.G.C., Werneck, R.F.: On the implementation of a swap-based local search procedure for the p-median problem. In: Ladner, R.E. (ed.), Proceedings of the 5th Workshop on Algorithm Engineering and Experiments (ALENEX'03), pp. 119–127, 2003

  36. Resende, M.G.C., Werneck, R.F.: A hybrid heuristic for the p-median problem. Journal of Heuristics, 10 (1), 59–88 (2004)

    Article  MathSciNet  Google Scholar 

  37. Rolland, E., Schilling, D.A., Current, J.R.: An efficient tabu search procedure for the p-median problem. EJOR, 96, 329–342 (1996)

    Article  Google Scholar 

  38. Senne, E.L.F., Lorena, L.A.N.: Lagrangean/surrogate heuristics for p-median problems. In: Laguna, M., Gonzalez-Velarde, J.L., (eds.), Computing Tools for Modeling, Optimization and Simulation: Interfaces in Computer Science and Operations Research, Kluwer Academic Publishers, pp. 115–130, 2001

  39. Senne, E.L.F., Lorena, L.A.N.: Stabilizing column generation using lagrangean/surrogate relaxation: an application to p-median location problems. EURO 2001 - THE EUROPEAN OPERATIONAL RESEARCH CONFERENCE - Erasmus University Rotterdam, July 9–11, 2001

  40. Senne, E.L.F., Lorena, L.A.N., Pereira, M.A.: A branch-and-price approach to p-median location problems. accepted in Computers and Operations Research, 2004

  41. Teitz, M.B., Bart, P.: Heuristic methods for estimating the generalized vertex median of a weighted graph. Operations Research, 16, 955–961 (1968)

    Article  MATH  Google Scholar 

  42. Vinod, H.D.: Integer programming and the theory of groups. Journal of the American Statistical Association, 6, 506–519 (1969)

    Article  Google Scholar 

  43. Whitaker, R.A.: A fast algorithm for the greedy interchange for large-scale clustering and median location problems. INFORS, 21, 95–108 (1983)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Sassano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avella, P., Sassano, A. & Vasil'ev, I. Computational study of large-scale p-Median problems. Math. Program. 109, 89–114 (2007). https://doi.org/10.1007/s10107-005-0700-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-005-0700-6

Keywords

Mathematics Subject Classification (2000)

Navigation