Skip to main content
Log in

Sums of random symmetric matrices and quadratic optimization under orthogonality constraints

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

Let B i be deterministic real symmetric m × m matrices, and ξ i be independent random scalars with zero mean and “of order of one” (e.g., \(\xi_{i}\sim \mathcal{N}(0,1)\)). We are interested to know under what conditions “typical norm” of the random matrix \(S_N = \sum_{i=1}^N\xi_{i}B_{i}\) is of order of 1. An evident necessary condition is \({\bf E}\{S_{N}^{2}\}\preceq O(1)I\), which, essentially, translates to \(\sum_{i=1}^{N}B_{i}^{2}\preceq I\); a natural conjecture is that the latter condition is sufficient as well. In the paper, we prove a relaxed version of this conjecture, specifically, that under the above condition the typical norm of S N is \(\leq O(1)m^{{1\over 6}}\): \({\rm Prob}\{||S_N||>\Omega m^{1/6}\}\leq O(1)\exp\{-O(1)\Omega^2\}\) for all Ω > 0 We outline some applications of this result, primarily in investigating the quality of semidefinite relaxations of a general quadratic optimization problem with orthogonality constraints \({\rm Opt} = \max\limits_{X_{j}\in{\bf R}^{m\times m}}\left\{F(X_1,\ldots ,X_k): X_jX_j^{\rm T}=I,\,j=1,\ldots ,k\right\}\), where F is quadratic in X =  (X 1,... ,X k ). We show that when F is convex in every one of X j , a natural semidefinite relaxation of the problem is tight within a factor slowly growing with the size m of the matrices \(X_j : {\rm Opt}\leq {\rm Opt}(SDP)\leq O(1) [m^{1/3}+\ln k]{\rm Opt}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anstreicher K., Wolkowicz H. (2000) On Lagrangian relaxation of quadratic matrix constraints. SIAM J. Matrix Anal. Appl. 22, 41–55

    Article  MathSciNet  Google Scholar 

  2. Ben-Tal A., Nemirovski A., Roos C. (2002) Robust solutions of uncertain quadratic and conic-quadratic problems. SIAM J. Optim. 13, 535–560

    MathSciNet  Google Scholar 

  3. Browne M.W. (1967) On oblique procrustes rotation. Psychometrika 32, 125–132

    Article  MathSciNet  Google Scholar 

  4. Edelman A., Arias T. Smith S.T. (1999) The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20, 303–353

    Article  MathSciNet  Google Scholar 

  5. Johnson, W.B., Schechtman, G.: Remarks on Talagrand’s deviation inequality for Rademacher functions. In: Odell, E., Rosenthal, H. (eds.) Functional Analysis (Austin, TX 1987/1989), Lecture Notes in Mathematics 1470, 72–22. Springer, Berlin Heidelberg Newyork (1991)

  6. Nemirovski, A.: On tractable approximations of randomly perturbed convex constraints. In: Proceedings of the 42nd IEEE Conference on Decision and Control Maui, Hawaii USA, December 2003, pp. 2419–2422

  7. Nemirovski A., Roos C., Terlaky T. (1999) On maximization of quadratic form over intersection of ellipsoids with common center. Math. Prog. 86, 463–473

    Article  MathSciNet  Google Scholar 

  8. Nemirovski, A.: Regular Banach spaces and large deviations of random sums. Working paper http://iew3.technion.ac.il/Labs/Opt/index.php?4

  9. Shapiro A. (1985) Extremal problems on the set of nonnegative definite matrices. Linear Algebra Appl. 67, 7–18

    Article  MathSciNet  Google Scholar 

  10. Shapiro A., Botha J.D. (1988) Dual algorithms for orthogonal procrustes rotations. SIAM J. Matrix Anal. Appl. 9, 378–383

    Article  MathSciNet  Google Scholar 

  11. Ten Berge J.M.F., Nevels K. (1977) A general solution to Mosiers oblique Procrustes problem. Psychometrika 42, 593–600

    Article  MathSciNet  Google Scholar 

  12. Wolkowicz H. (2000) Semidefinite programming approaches to the quadratic assignment problem. In: Saigal R., Wolkowitcz H., Vandenberghe L. (eds) Handbook on Semidefinite Programming. Kluwer, Dordrecht

    Google Scholar 

  13. Wolkowicz H., Zhao Q. (1999) Semidefinite programming relaxations for graph partitioning problems. Discrete Appl. Math. 96/97: 461–479

    Article  MathSciNet  Google Scholar 

  14. Zhao Q., Karisch S.E., Rendl F., Wolkowicz H. (1998) Semidefinite programming relaxations for the quadratic assignment problem. J. Comb. Optim. 2, 71–109

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadi Nemirovski.

Additional information

Research was partly supported by the Binational Science Foundation grant #2002038.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemirovski, A. Sums of random symmetric matrices and quadratic optimization under orthogonality constraints. Math. Program. 109, 283–317 (2007). https://doi.org/10.1007/s10107-006-0033-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0033-0

Keywords

Mathematics Subject Classification (2000)

Navigation