Skip to main content
Log in

Computing the inertia from sign patterns

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

A symmetric matrix A is said to be sign-nonsingular if every symmetric matrix with the same sign pattern as A is nonsingular. Hall, Li and Wang showed that the inertia of a sign-nonsingular symmetric matrix is determined uniquely by its sign pattern. The purpose of this paper is to present an efficient algorithm for computing the inertia of such symmetric matrices. The algorithm runs in \({\rm O}(\sqrt{n}m\log n)\) time for a symmetric matrix of order n with m nonzero entries. In addition, it is shown to be NP-complete to decide whether the inertia of a given symmetric matrix is not determined by its sign pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brualdi R.A. and Shader B.L. (1995). Matrices of Sign-solvable Linear Systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  2. Hall F.J., Li Z. and Wang D. (2001). Symmetric sign pattern matrices that require unique inertia. Linear Algebra Appl. 338: 153–169

    Article  MATH  MathSciNet  Google Scholar 

  3. Horn R.A. and Johnson C.R. (1985). Matrix Analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  4. Klee V., Ladner R. and Manber R. (1984). Sign-solvability revisited. Linear Algebra Appl. 59: 131–158

    Article  MATH  MathSciNet  Google Scholar 

  5. Gabow H.N. and Tarjan R.E. (1989). Faster scaling algorithms for network problems. SIAM J. Comput 18: 1013–1036

    Article  MATH  MathSciNet  Google Scholar 

  6. Lancaster K. (1962). The scope of qualitative economics. Rev. Econ. Stud. 29: 99–132

    Article  Google Scholar 

  7. Lovász L. and Plummer M.D. (1986). Matching Theory, Annals of Discrete Math, vol. 29. North- Holland, Amsterdam

    Google Scholar 

  8. McCuaig W. (2004). Pólya’s permanent problem. Electron. J. Comb. 11: R79

    MathSciNet  Google Scholar 

  9. Murota K. (1995). An identity for bipartite matching and symmetric determinant. Linear Algebra Appl. 222: 261–274

    Article  MATH  MathSciNet  Google Scholar 

  10. Robertson N., Seymour P.D. and Thomas R. (1999). Permanents, Pfaffian orientations, and even directed circuits. Ann. Math. 150: 929–975

    Article  MATH  MathSciNet  Google Scholar 

  11. Samuelson, P.A.: Foundations of Economics Analysis. Harvard University Press (1947) Atheneum (1971)

  12. Vazirani V.V. and Yannakakis M. (1989). Pfaffian orientations, 0–1 permanents and even cycles in directed graphs. Discrete Appl. Math. 25: 179–190

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naonori Kakimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakimura, N., Iwata, S. Computing the inertia from sign patterns. Math. Program. 110, 229–244 (2007). https://doi.org/10.1007/s10107-006-0056-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0056-6

Keywords

Navigation