Skip to main content
Log in

Computing the radius of pointedness of a convex cone

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

Let Ξ(H) denote the set of all nonzero closed convex cones in a finite dimensional Hilbert space H. Consider this set equipped with the bounded Pompeiu-Hausdorff metric δ. The collection of all pointed cones forms an open set in the metric space (Ξ(H),δ). One possible way of measuring the degree of pointedness of a cone K is by evaluating the distance from K to the set of all nonpointed cones. The number ρ(K) obtained in this way is called the radius of pointedness of the cone K. The evaluation of this number is, in general, a very cumbersome task. In this note, we derive a simple formula for computing ρ(K), and we propose also a method for constructing a nonpointed cone at minimal distance from K. Our results apply to any cone K whose maximal angle does not exceed 120°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Freund R. and Vera J.R. (2000). Condition-based complexity of convex optimization in conic linear form via the ellipsoid algorithm. SIAM J. Optim. 10: 155–176

    Article  MathSciNet  Google Scholar 

  2. Hiriart-Urruty, J.B.: Projection sur un cone convexe fermé d’un espace euclidien. Décomposition orthogonale de Moreau. Rev. Math. Spéc. 147–154 (1989)

  3. Iusem A. and Seeger A. (2004). Pointedness, connectedness and convergence results in the space of closed convex cones. J. Convex Anal. 11: 267–284

    MATH  MathSciNet  Google Scholar 

  4. Iusem A. and Seeger A. (2006). Measuring the degree of pointedness of a closed convex cone: a metric approach. Math. Nachrichten. 279: 599–618

    Article  MATH  MathSciNet  Google Scholar 

  5. Iusem A. and Seeger A. (2005). On pairs of vectors achieving the maximal angle of a convex cone. Math. Program. 104: 501–523

    Article  MATH  MathSciNet  Google Scholar 

  6. Iusem A. and Seeger A. (2005). Axiomatization of the index of pointedness of closed convex cones. Comput. Appl. Math. 24: 245–283

    Article  MathSciNet  Google Scholar 

  7. Moreau J.J. (1962). Décomposition orthogonale d’un espace hilbertien selon deux cones mutuellement polaires. Comptes Rendues de l’Académie des Sciences de Paris 255: 238–240

    MATH  MathSciNet  Google Scholar 

  8. Peña J. and Renegar J. (2000). Computing approximate solutions for conic systems of constraints. Math. Program. 87: 351–383

    Article  MATH  MathSciNet  Google Scholar 

  9. Rockafellar R.T. and Wets R.J. (1998). Variational Analysis. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Seeger.

Additional information

Dedicated to Clovis Gonzaga on the occassion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iusem, A., Seeger, A. Computing the radius of pointedness of a convex cone. Math. Program. 111, 217–241 (2008). https://doi.org/10.1007/s10107-006-0069-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0069-1

Mathematics Subject Classification (1991)

Navigation