Skip to main content
Log in

A matrix generation approach for eigenvalue optimization

  • Published:
Mathematical Programming Submit manuscript

Abstract

We study the extension of a column generation technique to nonpolyhedral models. In particular, we study the problem of minimizing the maximum eigenvalue of an affine combination of symmetric matrices. At each step of the algorithm a restricted master problem in the primal space, corresponding to the relaxed dual (original) problem, is formed. A query point is obtained as an approximate analytic center of a bounded set that contains the optimal solution of the dual problem. The original objective function is evaluated at the query point, and depending on its differentiability a column or a matrix is added to the restricted master problem. We discuss the issues of recovering feasibility after the restricted master problem is updated by a column or a matrix. The computational experience of implementing the algorithm on randomly generated problems are reported and the cpu time of the matrix generation algorithm is compared with that of the primal-dual interior point methods on dense and sparse problems using the software SDPT3. Our numerical results illustrate that the matrix generation algorithm outperforms primal-dual interior point methods on dense problems with no structure and also on a class of sparse problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. J. Soc. Ind. Appl. Math, 8, 703–712 (1961)

    Google Scholar 

  2. Benson, J.S., Ye, Y., Zhang, X.: Solving large scale sparse semidefinite programming for combinatorial optimization. SIAM J. Optim. 10 (2), 443–461 (2000)

    Article  MathSciNet  Google Scholar 

  3. Boyd, S., Vandenberghe' L.: Convex Optimization, Cambridge University Press, 2004

  4. Chua, S.K., Toh, K.C., Zhao, G.Y.: An analytic center cutting plane method with deep cuts for semidefinite feasibility problems. J. Optim. Theory Appl. 123, 291–318 (2004)

    Article  MathSciNet  Google Scholar 

  5. Dantzig, G.B., Wolfe, P.: Decomposition principle for linear programs. Oper. Res. 8, 101–111 (1960)

    MATH  Google Scholar 

  6. Elhedhli, S., Goffin, J.-L.: The integration of an interior point cutting plane method with branch and price algorithm. Math. Prog. 100 (2), 267–294 (2004)

    Article  MathSciNet  Google Scholar 

  7. Fisher, M.L.: The Lagrangean relaxation method for solving integer programming problems. Management Sci. 27, 1–18 (1981)

    MATH  MathSciNet  Google Scholar 

  8. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock problem. Oper. Res. 9, 849–859 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock problem–Part II. Oper. Res. 11, 863–888 (1963)

    MATH  Google Scholar 

  10. Goffin, J.-L., Gondzio, J., Sarkissian, R., Vial, J.-P.: Solving nonlinear multicommodity flow problems by the analytic center cutting plane method. Math. Prog. 76 (1), 131–154 (1997)

    Article  MathSciNet  Google Scholar 

  11. Goffin, J.-L., Haurie, A., Vial, J.-P.: Decomposition and nondifferentiable optimization with the projective algorithm. Management Sci. 38, 284–302 (1992)

    MATH  Google Scholar 

  12. Goffin, J.-L., Vial, J.-P.: Multiple cuts in the analytic center cutting plane methods. SIAM J. Optim. 11, 266–288 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Guignard, M., Kim, S.: Lagrangean decomposition: A model yielding stronger lagrangean bounds. Math. Prog. 39, 215–228 (1987)

    MATH  MathSciNet  Google Scholar 

  14. Helmberg, C.: Numerical evaluation of SB method. Math. Prog. 95, 381–406 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming. SIAM J. Optim. 10 (3), 673–696 (2000)

    Article  MathSciNet  Google Scholar 

  16. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4, 373–396 (1984)

    MATH  MathSciNet  Google Scholar 

  17. Kelley Jr., J.E.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math, 8, 703–712 (1961)

    Google Scholar 

  18. Kim, S., Kojima, M., Yamashita, M.: Second Order Cone Programming Relaxation of a Positive Semidefinite Constraint. Optim. Methods and Software 18 (5), 535–541 (2003)

    Article  Google Scholar 

  19. Kiwiel, K.C.: An aggregate subgradient method for nonsmooth convex minimization. Math. Prog. 27, 320–341 (1983)

    MATH  MathSciNet  Google Scholar 

  20. Krishnan, K., Mitchell, J.E.: An SDP based polyhedral cut and price approach for the maxcut problem, To appear in Computational Optimization and Applications, 2006

  21. Krishnan, K., Mitchell, J.E.: A unifying framework for several cutting plane methods for semidefinite programming. Optim. Meth. Software 21 (1), 57–74 (2006)

    Article  MathSciNet  Google Scholar 

  22. Krishnan, K., Mitchell, J.E.: Semi-infinite linear programming approaches to semidefinite programming. In: Pardalos, P.M., Wolkowicz, H (eds.) Novel Approaches to Hard Discrete Optimization Fields Institute Communication Series, AMS, (2003) pp. 123–142

  23. Krishnan, K., Terlaky, T.: Interior point and semidefinite approaches. In: Avis, D., Hertz, A., Marcotte, O (eds.) combinatorial Optimization GERAD 25th anniversary volume on Graph Theory and Combinatorial Optimization edited by , Springer-Verlag, 2005, pp. 101–157.

  24. Krishnan, K., Plaza, G., Terlaky, T.: A conic interior point decomposition approach for large scale semidefinite programming. Technical Report, Department of Mathematics, North Carolina State University, Raleigh, NC, 27695, December 2005

  25. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, (1998), ISBN 0-89871-407-9.

  26. Lewis, A.S., Overton, M.L.: Eigenvalue Optimization Acta Numerica (1996), pp. 149–190

  27. Mitchell, J.E.: Polynomial interior point cutting plane methods. Optim. Meth. Software 18 (5), 507–534 (2003)

    Article  Google Scholar 

  28. Oskoorouchi, M.R.: The analytic center cutting plane method with semidefinite cuts, Ph.D. Dissertation, Faculty of Management, McGill University, Montreal, Canada July 2002

  29. Oskoorouchi, M.R., Goffin, J.L.: The analytic center cutting plane method with semidefinite cuts. SIAM J. Optim. 13 (4), 1029–1053 (2003)

    Article  MathSciNet  Google Scholar 

  30. Oskoorouchi, M.R., Goffin, J.L.: An interior point cutting plane method for the convex feasibility problem with second-order cone inequalities. Mathematics of Operations Research, 30 (1), 127–149 (2005)

    Article  MathSciNet  Google Scholar 

  31. Oskoorouchi, M.R., Mitchell, J.E.: A second-order conee cutting surface method: complexity ans application, Technical Report, California State University San Marcos, San Marcos, California (2005)

  32. Overton, M.L.: Large-scale optimization of eigenvalue. SIAM J. Optim. 2, 88–120 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  33. Sonnevend, G.: New algorithms in convex programming based on a notation of center and on rational extrapolations, International Series of Numerical Mathematics, Birkhauser Verlag, Basel, Switzerland, 84, 311–327 (1988)

  34. Sun, J., Toh, K.C., Zhao, G.Y.: An analytic center cutting plane method for semidefinite feasibility problems. Math. Oper. Res. 27, 332–346 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Toh, K.C., Zhao, G.Y., Sun, J.: A multiple-cut analytic center cutting plane method for semidefinite feasibility problems. SIAM J. Optim. 12, 669–691 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  36. Todd, M.J.: Semidefinite Optimization. Acta Numerica 10, 515–560 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Prog. 95, 189–217 (2003)

    Article  MATH  Google Scholar 

  38. Ye, Y.: A potential reduction algorithm allowing column generation. SIAM J. Optim. 2, 7–20 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  39. Ye, Y.: Complexity analysis of the analytic center cutting plane method that uses multiple cuts. Math. Prog. 78, 85–104 (1997)

    Article  MATH  Google Scholar 

  40. Wolkowicz, H., Saigal, R., Vandenberghe, L.: (eds.) Handbook of Semidefinite Programming, Kluwer Academic Publishers, Boston-Dordrecht-London, 2000

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work has been completed with the partial support of a summer grant from the College of Business Administration, California State University San Marcos, and the University Professional Development/Research and Creative Activity Grant

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oskoorouchi, M., Goffin, JL. A matrix generation approach for eigenvalue optimization. Math. Program. 109, 155–179 (2007). https://doi.org/10.1007/s10107-006-0727-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0727-3

Keywords

Mathematics Subject Classification (1991)

Navigation