Skip to main content
Log in

The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

We analyze the rate of local convergence of the augmented Lagrangian method in nonlinear semidefinite optimization. The presence of the positive semidefinite cone constraint requires extensive tools such as the singular value decomposition of matrices, an implicit function theorem for semismooth functions, and variational analysis on the projection operator in the symmetric matrix space. Without requiring strict complementarity, we prove that, under the constraint nondegeneracy condition and the strong second order sufficient condition, the rate of convergence is linear and the ratio constant is proportional to 1/c, where c is the penalty parameter that exceeds a threshold \(\overline{c} > 0\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold V.I. (1971). On matrices depending on parameters. Russ. Math. Surv. 26: 29–43

    Article  Google Scholar 

  2. Arrow K.J. and Solow R.M. (1958). Gradient methods for constrained maxima with weakened assumptions. In: Arrow, K.J., Hurwicz, L. and Uzawa, H. (eds) Studies in Linear and Nonlinear Programming., pp 165–176. Stanford University Press, Stanford

    Google Scholar 

  3. Bertsekas D.P. (1976). On penalty and multiplier methods for constrained minimization. SIAM J. Cont. Optim. 14: 216–235

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertsekas D.P. (1982). Constrained Optimization and Lagrange Multiplier Methods. Academic, New York

    MATH  Google Scholar 

  5. Bonnans J.F., Cominetti R. and Shapiro A. (1998). Sensitivity analysis of optimization problems under second order regularity constraints. Math. Oper. Res. 23: 803–832

    MathSciNet  Google Scholar 

  6. Bonnans J.F., Cominetti R. and Shapiro A. (1999). Second order optimality conditions based on parabolic second order tangent sets. SIAM J. Optim. 9: 466–493

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonnans J.F., Ramírez C. and H (2005). Perturbation analysis of second order cone programming problems. Math. Programm. Ser. B 104: 205–227

    Article  MATH  Google Scholar 

  8. Bonnans J.F. and Shapiro A. (2000). Perturbation Analysis of Optimization Problems. Springer, New York

    MATH  Google Scholar 

  9. Chen X., Qi H.-D. and Tseng P. (2003). Analysis of nonsmooth symmetric-matrix functions with applications to semidefinite complementarity problems. SIAM J. Optim. 13: 960–985

    Article  MathSciNet  MATH  Google Scholar 

  10. Clarke F.H. (1983). Optimization and Nonsmooth Analysis. Wiley, New York

    MATH  Google Scholar 

  11. Conn A.R., Gould N.I.M. and Toint Ph. L. (1991). A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J. Numer. Anal. 28: 545–572

    Article  MathSciNet  MATH  Google Scholar 

  12. Contesse-Becker L. (1993). Extended convergence results for the method of multipliers for non-strictly binding inequality constraints. J. Optim. Theory Appl. 79: 273–310

    Article  MathSciNet  MATH  Google Scholar 

  13. Debreu G. (1952). Definite and semidefinite quadratic forms. Econometrica 20: 295–300

    Article  MathSciNet  MATH  Google Scholar 

  14. Diehl M., Jarre F. and Vogelbusch C. (2006). Loss of superlinear convergence for an SQP-type method with conic constraints. SIAM J. Optim. 16: 1201–1210

    Article  MathSciNet  MATH  Google Scholar 

  15. Eaves B.C. (1971). On the basic theorem of complementarity. Math. Programm. 1: 68–75

    Article  MathSciNet  MATH  Google Scholar 

  16. Faraut J. and Korányi A. (1994). Analysis on Symmetric Cones. Clarendon Press, London

    MATH  Google Scholar 

  17. Golshtein E.G. and Tretyakov N.V. (1989). Modified Lagrangians and Monotone Maps in Optimization. Wiley, New York

    Google Scholar 

  18. Golub G. and Van Loan C.F. (1996). Matrix Computations. The Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  19. Hestenes M.R. (1969). Multiplier and gradient methods. J. Optim. Theory Appl. 4: 303–320

    Article  MathSciNet  MATH  Google Scholar 

  20. Higham N.J. (1998). Computing a nearest symmetric positive semidefinite matrix. Linear Algebra Appl. 103: 103–118

    Article  MathSciNet  Google Scholar 

  21. Ito K. and Kunisch K. (1990). The augmented Lagrangian method for equality and inequality constraints in Hilbert spaces. Math. Program. 46: 341–360

    Article  MathSciNet  MATH  Google Scholar 

  22. Kummer B. (1988). Newton’s method for non-differentiable functions. In: Guddat, J. (eds) Advances in Mathematical Optimization, pp 114–125. Akademie-Verlag, Berlin

    Google Scholar 

  23. Kummer B. (1991). Lipschitzian inverse functions, directional derivatives and applications in C 1,1-optimization. J. Optim. Theory Appl. 70: 559–580

    Article  MathSciNet  Google Scholar 

  24. Leibfritz, F.: COMPl e ib 1.1: COnstraint Matrix-optimization Problem Library—a collection of test examples for nonlinear semidefinite programs, control system design and related problems. Technical Report, Department of Mathematics, University of Trier, Germany (2005)

  25. Löwner K. (1934). Über monotone matrixfunktionen. Mathematische Zeitschrift 38: 177–216

    Article  MathSciNet  Google Scholar 

  26. Kocvara M. and Stingl M. (2004). Solving nonconvex SDP problems of structural optimization with stability control. Optim. Methods Softw. 19: 595–609

    Article  MathSciNet  MATH  Google Scholar 

  27. Meng F., Sun D. and Zhao G. (2005). Semismoothness of solutions to generalized equations and the Moreau–Yosida regularization. Math. Program. Ser. B 104: 561–581

    Article  MathSciNet  MATH  Google Scholar 

  28. Mifflin R. (1977). Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15: 957–972

    Article  MathSciNet  Google Scholar 

  29. Pang J.-S., Sun D. and Sun J. (2003). Semismooth homeomorphisms and strong stability of semidefinite and Lorentz complementarity problems. Math. Oper. Res. 28: 39–63

    Article  MathSciNet  MATH  Google Scholar 

  30. Pennanen T. (2002). Local convergence of the proximal point algorithm and multiplier methods without monotonicity. Math. Oper. Res. 27: 170–191

    Article  MathSciNet  MATH  Google Scholar 

  31. Powell M.J.D. (1972). A method for nonlinear constraints in minimization problems. In: Fletcher, R. (eds) Optimization, pp 283–298. Academic, New York

    Google Scholar 

  32. Qi L. and Sun J. (1993). A nonsmooth version of Newton’s method. Math. Program. 58: 353–367

    Article  MathSciNet  Google Scholar 

  33. Robinson S.M. (1984). Local structure of feasible sets in nonlinear programming, part II: nondegeneracy. Math. Program. Study 22: 217–230

    MATH  Google Scholar 

  34. Rockafellar R.T. (1973). A dual approach to solving nonlinear programming problems by unconstrained optimization. Math. Program. 5: 354–373

    Article  MathSciNet  MATH  Google Scholar 

  35. Rockafellar R.T. (1973). The multiplier method of Hestenes and Powell applied to convex programming. J. Optim. Theory Appl. 12: 555–562

    Article  MathSciNet  MATH  Google Scholar 

  36. Rockafellar R.T. (1976). Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14: 877–898

    Article  MathSciNet  MATH  Google Scholar 

  37. Rockafellar R.T. (1976). Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1: 97–116

    Article  MathSciNet  MATH  Google Scholar 

  38. Rockafellar R.T. (1993). Lagrange multipliers and optimality. SIAM Rev. 35: 183–238

    Article  MathSciNet  MATH  Google Scholar 

  39. Rockafellar R.T. and Wets R.J.-B (1998). Variational Analysis. Springer, New York

    MATH  Google Scholar 

  40. Shapiro A. (1990). On concepts of directional differentiability. J. Optim. Theory Appl. 66: 477–487

    Article  MathSciNet  MATH  Google Scholar 

  41. Shapiro A. (2003). Sensitivity analysis of generalized equations. J. Math. Sci. 115: 2554–2565

    Article  MathSciNet  MATH  Google Scholar 

  42. Shapiro A. and Sun J. (2001). Some properties of the augmented Lagrangian in cone constrained optimization. Math. Oper. Res. 29: 479–491

    Article  MathSciNet  Google Scholar 

  43. Sun D. (2001). A further result on an implicit function theorem for locally Lipschitz functions. Oper. Res. Lett. 28: 193–198

    Article  MathSciNet  MATH  Google Scholar 

  44. Sun D. (2006). The strong second order sufficient condition and constraint nondegeneracy in nonlinear semidefinite programming and their implications. Math. Oper. Res. 31: 761–776

    Article  MathSciNet  MATH  Google Scholar 

  45. Sun D. and Sun J. (2002). Semismooth matrix valued functions. Math. Oper. Res. 27: 150–169

    Article  MathSciNet  MATH  Google Scholar 

  46. Sun, D., Sun, J.: Löwner’s operator and spectral functions in Euclidean Jordan algebras. Department of Mathematics, National University of Singapore (2004)

  47. Tretyakov N.V. (1973). A method of penalty estimates for convex programming problems.. Èkonomika i Matematicheskie Metody 9: 525–540

    Google Scholar 

  48. Tseng P. (1998). Merit functions for semi-definite complementarity problems. Math. Program. 83: 159–185

    MathSciNet  Google Scholar 

  49. Tsing N.-K., Fan M.K.H. and Verriest E.I. (1994). On analyticity of functions involving eigenvalues. Linear Algebra Appl. 207: 159–180

    Article  MathSciNet  MATH  Google Scholar 

  50. Zarantonello E.H. (1971). Projections on convex sets in Hilbert space and spectral theory I and II. In: Zarantonello, E.H. (eds) Contributions to Nonlinear Functional Analysis, pp 237–424. Academic, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Defeng Sun.

Additional information

The research of Defeng Sun is partly supported by the Academic Research Fund from the National University of Singapore. The research of Jie Sun and Liwei Zhang is partly supported by Singapore–MIT Alliance and by Grants RP314000-042/057-112 of the National University of Singapore. The research of Liwei Zhang is also supported by the National Natural Science Foundation of China under project grant no. 10471015 and by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, D., Sun, J. & Zhang, L. The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming. Math. Program. 114, 349–391 (2008). https://doi.org/10.1007/s10107-007-0105-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0105-9

Keywords

Mathematics Subject Classification (2000)

Navigation