Skip to main content
Log in

Convex analysis can be helpful for the asymptotic analysis of monotone operators

Asymptotic analysis of monotone operators

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

We use representations of maximal monotone operators for studying recession (or asymptotic) operators associated to maximal monotone operators. Such a concept is useful for dealing with unboundedness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adly S., Goeleven D. and Théra M. (1996). Recession mappings and noncoercive variational inequalities. Nonlinear Anal. 26: 1573–1603

    Article  MathSciNet  MATH  Google Scholar 

  2. Attouch H. (1984). Variational Convergence for Functions and Operators. Pitman, Boston

    MATH  Google Scholar 

  3. Attouch, H., Chbani, Z., Moudafi, A.: Une notion d’opérateur de récession pour les maximaux monotones. Séminaire d’Analyse Convexe, Montpellier, Exposé No. 12 , 37 pp (1992)

  4. Attouch, H., Chbani, Z., Moudafi, A.: Recession operators and solvability of variational problems in reflexive Banach spaces. In: Bouchitté, G., et al. (eds.) Calculus of Variations, Homogenization and Continuum Mechanics. Ser. Adv. Math. Appl. Sci., vol. 18, pp. 51–67. World Scientific, Singapore (1994)

  5. Auslender A. (1996). Noncoercive optimization problems. Math. Oper. Res. 21: 769–782

    MathSciNet  MATH  Google Scholar 

  6. Auslender A. (1997). How to deal with the unboundedness in optimization: theory and algorithms. Math. Program. ser. B 31: 3–19

    MathSciNet  Google Scholar 

  7. Auslender A. and Teboulle M. (2003). Asymptotic cones and functions in optimization and variational inequalities. Springer Monographs in Mathematics. Springer, New York

    Google Scholar 

  8. Azé and D. (1997). éléments d’analyse convexe et variationnelle. Mathématiques pour le 2e Cycle. Ellipses, Paris

    Google Scholar 

  9. Baiocchi C., Buttazzo G., Gastaldi F. and Tomarelli F. (1988). General existence theorems for unilateral problems in continum mechanics. Arch. Ration. Mech. Anal. 100: 149–180

    MathSciNet  MATH  Google Scholar 

  10. Barbu V. (1976). Nonlinear semigroups and differential equations in Banach spaces. Noordhoff, Leyden

    MATH  Google Scholar 

  11. Beer G. (1993). Topologies on Closed and Closed Convex Sets. Kluwer, Dordrecht

    MATH  Google Scholar 

  12. Brézis H. (1973). Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies, 5. North-Holland, Amsterdam

    Google Scholar 

  13. Brézis H. and Haraux A. (1976). Image d’une somme d’opérateurs monotones et applications. Israel J. Math. 23: 165–186

    Article  MathSciNet  MATH  Google Scholar 

  14. Brézis H. and Nirenberg L. (1978). Characterizations of the ranges of some nonlinear operators and applications to boundary value problems. Ann. Sci. Norm. Super. Pisa Cl. Sci. (Serie IV) 5: 225–326

    MATH  Google Scholar 

  15. Browder, F.E.: Nonlinear operators and nonlinear equations of evolution in Banach spaces. In: Proc. Symp. Pure Math. Vol. XVIII, Part 2. American Mathematical Society, Providence (1976)

  16. Burachik R.S. and Svaiter B.F. (2002). Maximal monotone operators, convex functions and a special family of enlargements. Set-Valued Anal. 10: 297–316

    Article  MathSciNet  MATH  Google Scholar 

  17. Cominetti R. (1994). Some remarks on convex duality in normed spaces with and without compactness. Control Cybern. 23: 123–138

    MathSciNet  MATH  Google Scholar 

  18. Contesse L. and Penot J.-P. (1991). Continuity of the Fenchel correspondence and continuity of polarities. J. Math. Anal. Appl. 156: 305–328

    Article  MathSciNet  MATH  Google Scholar 

  19. Dedieu J.-P. (1977). Cône asymptote d’un ensemble non convexe. Appl. Optim. C. R. Acad. Sci. Paris 287: 501–503

    MathSciNet  Google Scholar 

  20. Dedieu, J.-P.: Cône asymptote d’un ensemble non convexe. Bull. Soc. Math. Fr. Suppl. Mém. 60 (Proc. Colloq., Pau 1977), pp 31–44 (1979)

  21. Dedieu J.-P. (1990). L’image de la limite supérieure d’une famille d’ensembles est-elle égale à la limite supérieure de la famille des images?. Ann. Fac. Sc. Toulouse 11: 91–103

    MathSciNet  MATH  Google Scholar 

  22. Fitzpatrick, S.: Representing monotone operators by convex functions. Workshop and Miniconference on Functional Analysis and Optimization (Canberra, 1988), pp. 59–65. Austral. Nat. Univ., Canberra (1988)

  23. Laurent P.-J. (1972). Approximation et optimisation. Enseignement des sciences 13. Hermann, Paris

    Google Scholar 

  24. Levine P. and Pomerol J.-Ch. (1979). Sufficient conditions for Kuhn–Tucker vectors in convex programming. SIAM J. Control Optim. 17: 689–699

    Article  MathSciNet  MATH  Google Scholar 

  25. Luc D.T. (1993). Recession maps and applications. Optimization 27: 1–15

    Article  MathSciNet  MATH  Google Scholar 

  26. Luc D.T. (2002). Recessively compact sets: properties and uses. Set-Valued Anal. 10: 15–35

    Article  MathSciNet  MATH  Google Scholar 

  27. Luc D.T. and Penot J.-P. (2001). Convergence of asymptotic directions. Trans. Am. Math. Soc. 353: 4095–4121

    Article  MathSciNet  MATH  Google Scholar 

  28. Passty J.B. (1986). The parallel sum of nonlinear monotone operators. Nonlinear Anal. Theory Methods Appl. 10: 215–227

    Article  MathSciNet  MATH  Google Scholar 

  29. Penot J.-P. (1983). Compact nets, filters and relations. J. Math. Anal. Appl. 93: 400–417

    Article  MathSciNet  MATH  Google Scholar 

  30. Penot, J.-P.: Closednesss of images via asymptotic analysis. Unpublished manuscript

  31. Penot J.-P. (2004). The relevance of convex analysis for the study of monotonicity. Nonlinear Anal. 58: 855–871

    Article  MathSciNet  MATH  Google Scholar 

  32. Penot, J.-P.: Natural closure, natural compositions and natural sums of monotone operators. Univ. of Pau, Preprint (2002)

  33. Penot J.-P. and Zălinescu C. (2003). Continuity of usual operations and variational convergences. Set-Valued Anal. 11: 225–256

    Article  MathSciNet  MATH  Google Scholar 

  34. Penot J.-P. and Zălinescu C. (2005). Some problems about the representation of monotone operators by convex functions. ANZIAM J. 47: 1–20

    Article  MATH  Google Scholar 

  35. Penot, J.-P., Zălinescu, C.: On the convergence of maximal monotone operators. Proc. Am. Math. Soc. 134, 1937–1946 (2006)

    Google Scholar 

  36. Rockafellar R.T. and Wets R.J.-B. (1997). Variational Analysis. Springer, New York

    Google Scholar 

  37. Simons S. and Zălinescu C. (2005). Fenchel duality, Fitzpatrick functions and maximal monotonicity. J. Nonlinear Convex Anal. 6: 1–22

    MathSciNet  MATH  Google Scholar 

  38. Zălinescu C. (1993). Recession cones and asymptotically compact sets. J. Optim. Theory Appl. 77: 209–220

    Article  MathSciNet  MATH  Google Scholar 

  39. Zălinescu C. (2002). Convex Analysis in General Vector Spaces. World Scientific, Singapore

    MATH  Google Scholar 

  40. Zălinescu C. (2005). A new proof of the maximal monotonicity of the sum using the Fitzpatrick function. In: Giannessi, F. and Maugeri, A. (eds) Variational Analysis and Applications., pp 1159–1172. Springer, New York

    Chapter  Google Scholar 

  41. Zeidler E. (1990). Nonlinear functional analysis and its applications. II/B: Nonlinear monotone operators. Springer, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -P. Penot.

Additional information

Dedicated to Alfred Auslender on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penot, J.P., Zălinescu, C. Convex analysis can be helpful for the asymptotic analysis of monotone operators. Math. Program. 116, 481–498 (2009). https://doi.org/10.1007/s10107-007-0114-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0114-8

Mathematics Subject Classification (2000)

Navigation