Skip to main content
Log in

The mixing-MIR set with divisible capacities

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

We study the set \(S = \{(x, y) \in \Re_{+} \times Z^{n} : x + B_{j} y_{j} \geq b_{j}, j = 1, \ldots, n\}\) , where \(B_{j}, b_{j} \in \Re_{+} - \{0\}\) , j =  1, ..., n, and B 1 | ... | B n . The set S generalizes the mixed-integer rounding (MIR) set of Nemhauser and Wolsey and the mixing-MIR set of Günlük and Pochet. In addition, it arises as a substructure in general mixed-integer programming (MIP), such as in lot-sizing. Despite its importance, a number of basic questions about S remain unanswered, including the tractability of optimization over S and how to efficiently find a most violated cutting plane valid for Pconv (S). We address these questions by analyzing the extreme points and extreme rays of P. We give all extreme points and extreme rays of P. In the worst case, the number of extreme points grows exponentially with n. However, we show that, in some interesting cases, it is bounded by a polynomial of n. In such cases, it is possible to derive strong cutting planes for P efficiently. Finally, we use our results on the extreme points of P to give a polynomial-time algorithm for solving optimization over S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen K., Cornuéjols G. and Li Y. (2005). Split closure and intersection cuts. Math. Program. 102: 457–493

    Article  MathSciNet  MATH  Google Scholar 

  2. Balas E. (1971). Intersection cuts—a new type of cutting planes for integer programming. Oper. Res. 19: 19–39

    MathSciNet  MATH  Google Scholar 

  3. Balas E. (1975). Facets of the knapsack polytope. Math. Program. 8: 146–164

    Article  MathSciNet  MATH  Google Scholar 

  4. Balas E. (1979). Disjunctive programming. Ann. Discrete Math. 5: 3–51

    Article  MathSciNet  MATH  Google Scholar 

  5. Balas E. (1998). Disjunctive programming: properties of the convex hull of the feasible points. Discrete Appl. Math. 89: 3–44

    Article  MathSciNet  MATH  Google Scholar 

  6. Balas E., Ceria S. and Cornuéjols G. (1993). A lift-and-project cutting plane algorithm for mixed 0-1 programs. Math. Program. 58: 295–324

    Article  Google Scholar 

  7. Balas E., Ceria S., Cornuéjols G. and Natraj G. (1996). Gomory cuts revisited. Oper. Res. Lett. 19: 1–9

    Article  MathSciNet  MATH  Google Scholar 

  8. Bienstock D. and Zuckerberg M. (2004). Subset algebra lift operators for 0-1 integer programming. SIAM J. Optim. 15: 63–95

    Article  MathSciNet  MATH  Google Scholar 

  9. Bixby R.E., Fenelon M., Gu Z., Rothberg E., Wunderling R. (2000) MIP: Theory and practice—closing the gap. In: Powell, M.J.D., Scholtes, S. (eds.) System Modeling and Optimization. Kluwer, Dordrecht, pp. 19–49

    Google Scholar 

  10. Caprara A. and Letchford A.N. (2003). On the separation of split cuts and related inequalities. Math. Program. 94: 279–294

    Article  MathSciNet  MATH  Google Scholar 

  11. Chvátal V. (1973). Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Math. 4: 305–337

    Article  MathSciNet  MATH  Google Scholar 

  12. Conforti M. and Wolsey L.A. (2005). Compact formulations as a union of Polyhedra. CORE Discussion Paper 62. Université Catholique de Louvain, Louvain

    Google Scholar 

  13. Constantino M., Miller A.J. and van Vyve M. (2006). Mixing MIR Inequalities with Two Divisible Coefficients. Working Paper. University of Wisconsin, Wisconsin

    Google Scholar 

  14. Cook W., Kannan R. and Schrijver A. (1990). Chvátal closures for mixed integer programs. Math. Program. 47: 155–174

    Article  MathSciNet  MATH  Google Scholar 

  15. Cornuéjols G. and Li Y. (2001). Elementary closures for integer programs. Oper. Res. Lett. 28: 1–8

    Article  MathSciNet  MATH  Google Scholar 

  16. Dantzig G.B., Fulkerson D.R. and Johnson S.M. (1959). On a linear-programming, combinatorial approach to the traveling-salesman problem. Oper. Res. 7: 58–66

    Article  MathSciNet  Google Scholar 

  17. di Summa M. (2007). The Mixing Set with Divisible Capacities. Working Paper. University of Padua, Italy

    Google Scholar 

  18. Fischetti M., Lodi, A. (2005) Optimizing over the First Chvátal Closure. In: Jünger M., Kaibel V. (eds.) Integer Programming and Combinatorial Optimization (IPCO), Lecture Notes in Computer Science, Vol. 3509, Springer, Berlin, pp. 12–22

    Google Scholar 

  19. Gomory R.E. (1958). Outline of an algorithm for integer solutions to linear programs. Bull. Am. Math. Soc. 64: 275–278

    Article  MathSciNet  MATH  Google Scholar 

  20. Gomory, R.E.: An Algorithm for the Mixed Integer Problem. RM-2597, The RAND Corporation (1960)

  21. Grötschel M., Lovasz L. and Schrijver A. (1981). The ellipsoid method and its consequences in combinatorial optimization. Combinatorica. 1: 169–197

    Article  MathSciNet  MATH  Google Scholar 

  22. Günlük O. and Pochet Y. (2001). Mixing mixed-integer inequalities. Math. Program. 90: 429–457

    Article  MathSciNet  MATH  Google Scholar 

  23. Hammer P.L., Johnson E.L. and Peled U.N. (1975). Facets of regular 0-1 polytopes. Math. Program. 8: 179–206

    Article  MathSciNet  MATH  Google Scholar 

  24. Lovász L. and Schrijver A. (1991). Cones of matrices and set functions for 0-1 optimization. SIAM J. Optim. 1: 166–190

    Article  MathSciNet  MATH  Google Scholar 

  25. Marchand H., Martin A., Weismantel R. and Wolsey L.A. (2002). Cutting planes in integer and mixed integer programming. Discrete Appl. Math. 123: 397–446

    Article  MathSciNet  MATH  Google Scholar 

  26. Marchand H. and Wolsey L.A. (2001). Aggregation and mixed integer rounding to solve MIPs. Oper. Res. 49: 363–371

    Article  MathSciNet  Google Scholar 

  27. Mason R.O., McKenney J.L., Carlson W. and Copeland D.C. (1996). Absolutely, positively operations research: the federal express story. Interfaces. 27: 17–36

    Google Scholar 

  28. Miller A.J. and Wolsey L.A. (2003). Tight formulations for some simple mixed integer programs and convex objective integer programs. Math. Program. 98: 73–88

    Article  MathSciNet  MATH  Google Scholar 

  29. Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. Wiley, New York (1988)

  30. Nemhauser G.L. and Wolsey L.A. (1990). A recursive procedure to generate all cuts for 0–1 mixed integer programs. Math. Program. 46: 379–390

    Article  MathSciNet  MATH  Google Scholar 

  31. Pochet Y. and Wolsey L.A. (1995). Integer knapsack and flow covers with divisible coefficients: polyhedra, optimization and separation. Discrete Appl. Math. 59: 57–74

    Article  MathSciNet  MATH  Google Scholar 

  32. Pochet Y. and Wolsey L.A. (2005). Production Planning by Mixed Integer Programming. Springer, Berlin

    Google Scholar 

  33. Sherali H.D. and Adams W.P. (1994). A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-one programming problems. Discrete Appl. Math. 52: 83–106

    Article  MathSciNet  MATH  Google Scholar 

  34. van Vyve, M.: A Solution Approach of Production Planning Based on Compact Formulations for Single-item Lot-Sizing Models. Ph.D. Dissertation, Université Catholique de Louvain, Belgium (2003)

  35. van Vyve M. (2005). The continuous mixing polyhedron. Math. Oper. Res. 30: 441–452

    Article  MathSciNet  MATH  Google Scholar 

  36. Wolsey L.A. (1975). Faces for a linear inequality in 0-1 variables. Math. Program. 8: 165–178

    Article  MathSciNet  MATH  Google Scholar 

  37. Wolsey L.A. (2003). Strong formulations for mixed integer programs: valid inequalities and extended formulations. Math. Program. 97: 423–447

    MathSciNet  MATH  Google Scholar 

  38. Zhao M. and de Farias I.R. (2005). The Polar of a Simple Mixed-Integer Set. Working Paper. State University of New York, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. R. de Farias Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, M., de Farias, I.R. The mixing-MIR set with divisible capacities. Math. Program. 115, 73–103 (2008). https://doi.org/10.1007/s10107-007-0140-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0140-6

Keywords

Mathematics Subject Classification (2000)

Navigation