Skip to main content
Log in

Long time missions and the fuel-optimal attitude maneuvering in a swinging mode

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

The problem of fuel-optimal attitude maneuvering of a space vehicle (SV) with non-fixed time is considered. The state constraint related to the maintenance of artificial gravitation is imposed. This problem is especially important for long-time space missions. The attitude of the space vehicle is controlled by means of a pair of reactive engines which produce a single control torque with fixed direction in the body-fixed frame. An optimal solution is obtained in the class of trajectories belonging to “swinging mode” two-periodic sliding cycling regimes. The solution is found in analytical form and optimal synthesis is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackermann J. (1969). Über die Lageregelung von Drallstabilizierten Körpen. Z. Flugwiss. 17(6): 199–207

    MATH  Google Scholar 

  2. Arnold V.I. (1978). Mathematical Methods of Classical Mechanics, p. 463. Springer, New York

    Google Scholar 

  3. Athans M., Falb P.L. and Lacoss R.T. (1963). Time-, fuel-, and energy- optimal control of nonlinear norm-invariant systems. IEEE Trans. Autom. Control 8(7): 196–202

    Article  MathSciNet  Google Scholar 

  4. Borshchevsky M. and Ioslovich I. (1966). Certain problems in the optimum stabilization of an axisymmetric satellite. Cosm. Res. 4(3): 344–350

    Google Scholar 

  5. Borshchevsky M. and Ioslovich I. (1985). The problem of the optimum rapid breaking of an axisymmetric solid rotating around its center of mass. J. Appl. Math. Mech. 49(1): 24–30

    Article  Google Scholar 

  6. Dixon M.V. and Edelbaum T.N. (1970). Fuel optimal reorientation of axisymmetric spacecraft. J. Spacecr. Rockets 7(11): 1345–1351

    Article  Google Scholar 

  7. Grigoriev K. and Ioslovich I. (1985). Problems of optimal control of cyclic processes. Sov. J. Comput. Syst. Sci. (Technicheskaya Cybernetica) 23(1): 8–14

    Google Scholar 

  8. Gurfil, P.: Stabilization of rigid body dynamics using the Serret-Andoyer variables. In: Proceedings of American Control Conference, 2022–2027. Nonlinear Control (to be published) (2005)

  9. Gurman V.I. (1965). Method of investigation of one class of the optimal sliding mode regimes. Autom. Remote Control 26(7): 1159–1166

    MathSciNet  Google Scholar 

  10. Gurman V.I., Lavrovskii E.K. and Sergeev S.I. (1970). Optimal attitude control of the axisymmetric rotating SV. Cosm. Res. 8(3): 242–250

    Google Scholar 

  11. Ioslovich I. (1966). Optimal stabilization an axisymmetric satellite by means of N Jets. Cosm. Res. 4(4): 545–551

    Google Scholar 

  12. Ioslovich I. (1967). Optimal stabilization of a satellite in an inertial coordinate system. Astronaut. Acta 13(1): 37–47

    Google Scholar 

  13. Ioslovich I. (1986). Optimal attitude control of a spacecraft in the swinging mode. Cosm. Res. 24(3): 376–379

    Google Scholar 

  14. Ioslovich I. (1990). Optimal space vehicle reorientation in the rocking mode by using engines with unequal arms. Cosm. Res. 28(2): 198–202

    Google Scholar 

  15. Ioslovich I. (2003). Arbitrary fuel-optimal attitude maneuvering of a non-symmetric space vehicle in a vehicle-fixed coordinate frame. Automatica 39: 557–562

    Article  MATH  MathSciNet  Google Scholar 

  16. Ioslovich I. (2003). Optimal control of rigid body rotation around center of mass. J. Dyn. Control Syst. 9(4): 549–562

    Article  MATH  MathSciNet  Google Scholar 

  17. Krstić M. and Tsiotras P. (1999). Inverse optimal stabilization of a rigid spacecraft. IEEE Trans. Autom. Control 44(5): 1042–1049

    Article  MATH  Google Scholar 

  18. Krotov V.F. (1988). A technique of global bounds in optimal control theory. Control Cybern. 12(2–3): 115–144

    MathSciNet  Google Scholar 

  19. Krotov V.F. (1996). Global Methods in Optimal Control Theory. Marcel Dekker, New York

    MATH  Google Scholar 

  20. Kumar K.S.P. (1966). Stabilization of a satellite via specific optimal control. IEEE Trans. Aerosp. Electron. Syst. 2: 446–449

    Article  Google Scholar 

  21. Kumar K.S.P. (1965). On the optimum stabilization of a satellite. IEEE Trans. Aerosp. Electron. Syst. 1: 82–86

    Article  Google Scholar 

  22. Lavrovskii E.K. (1970). Optimal guidance of a dynamically symmetric satellite to the axial twisting state. Cosm. Res. 8(6): 834–842

    Google Scholar 

  23. Lee E.B. (1962). Discussion of satellite attitude control. ARS J. 32(6): 981–983

    Google Scholar 

  24. Lee E.B. and Marcus L. (1966). Foundations of Optimal Control Theory. Krueger, Malabar

    Google Scholar 

  25. Marsden J.E. and Ratiu T.S. (1999). Introduction to Mechanics and Symmetry, p. 582. Springer, New York

    Google Scholar 

  26. Pontryagin L., Boltyansky V., Gamkrelidze R. and Mischenko E. (1962). Math. Theory of Optimal Processes, p. 383.. Wiley-Interscience, NY

    Google Scholar 

  27. Prajna S., Parrilo P.A. and Rantzer A. (2004). Nonlinear control synthesis by convex optimization. IEEE Trans. Autom. Control 49(2): 310–314

    Article  MathSciNet  Google Scholar 

  28. Scrivener S. and Thompson R. (1994). Survey of time-optimal attitude maneuvers. J. Guid. Control Dyn. 17(2): 225–233

    Article  Google Scholar 

  29. Soloviev V.P. (1969). On the optimal turning of SV around arbitrary fixed axis. Cosm. Res. 7(1): 25–39

    Google Scholar 

  30. De Valée Poussin, C.-J.: Mecanique Analitique, Tome 2, Dynamique des Systemes, p. 302. Universite de Louvain (1925)

  31. Windecknecht T.G. (1963). Optimal stabilization of rigid body attitude. J. Math. Anal. Appl. 6(2): 325–335

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Ioslovich.

Additional information

The short conference version of this paper was published in Proceedings of the IFAC Workshop GSCP-04, Pereyslavl-Zalessky, Russia, September 21–29, 2004.

This paper was presented as an invited lecture at the International Conference on Control and Optimization in honor of Professor Boris Polyak, Institute of Control Science RAN, Russia, Moscow, May 19–20, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioslovich, I., Borshchevsky, M. & Gutman, PO. Long time missions and the fuel-optimal attitude maneuvering in a swinging mode. Math. Program. 120, 49–66 (2009). https://doi.org/10.1007/s10107-007-0144-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0144-2

Mathematics Subject Classification (2000)

Navigation