Skip to main content
Log in

Characterizing and bounding the imperfection ratio for some classes of graphs

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

Perfect graphs constitute a well-studied graph class with a rich structure, which is reflected by many characterizations with respect to different concepts. Perfect graphs are, for instance, precisely those graphs G where the stable set polytope STAB(G) equals the fractional stable set polytope QSTAB(G). The dilation ratio \({\rm min}\{t : {\rm QSTAB}(G) \subseteq t\,{\rm STAB}(G)\}\) of the two polytopes yields the imperfection ratio of G. It is NP-hard to compute and, for most graph classes, it is even unknown whether it is bounded. For graphs G such that all facets of STAB(G) are rank constraints associated with antiwebs, we characterize the imperfection ratio and bound it by 3/2. Outgoing from this result, we characterize and bound the imperfection ratio for several graph classes, including near-bipartite graphs and their complements, namely quasi-line graphs, by means of induced antiwebs and webs, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berge C. (1961). Färbungen von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind. Wiss. Zeitschrift der Martin-Luther-Universität Halle-Wittenberg 10: 114–115

    Google Scholar 

  2. Cheng E. and de Vries S. (2001). Antiweb inequalities: strength and intractability. Congr. Numeration 152: 5–19

    MATH  Google Scholar 

  3. Chudnovsky M. and Ovetsky A. (2007). Coloring quasi-line graphs. J. Graph. Theory 54: 41–50

    Article  MATH  MathSciNet  Google Scholar 

  4. Chudnovsky M., Robertson N., Seymour P. and Thomas R. (2006). The strong perfect graph theorem. Ann Math 164: 51–229

    Article  MATH  MathSciNet  Google Scholar 

  5. Chudnovsky, M., Seymour, P.: The structure of claw-free graphs. Surv. Combinat. 153–171 (2005)

  6. Chvátal V. (1975). On certain polytopes associated with graphs. J. Comb. Theory (B) 18: 138–154

    Article  MATH  Google Scholar 

  7. Edmonds J.R. (1965). Maximum matching and a polyhedron with (0,1) vertices. J. Res. Nat. Bur. Stand. 69: 125–130

    MATH  MathSciNet  Google Scholar 

  8. Eisenbrand F., Oriolo G., Stauffer G. and Ventura P. (2005). Circular ones matrices and the stable set polytope of quasi-line graphs. Lect. Notes Comput. Sci. 3509: 291–305

    Article  MathSciNet  Google Scholar 

  9. Gerke S. and McDiarmid C. (2001). Graph imperfection. J. Comb. Theory (B) 83: 58–78

    Article  MATH  MathSciNet  Google Scholar 

  10. Gerke S. and McDiarmid C. (2001). Graph imperfection II. J. Comb. Theory (B) 83: 79–101

    Article  MATH  MathSciNet  Google Scholar 

  11. Grötschel M., Lovász L. and Schrijver A. (1988). Geometric Algorithms and Combinatorial Optimization. Springer, Heidelberg

    MATH  Google Scholar 

  12. Mycielski J. (1955). Sur le coloriage des graphs. Colloq. Math. 3: 161–162

    MATH  MathSciNet  Google Scholar 

  13. Reed B. and Ramirez-Alfonsin J. (2001). Perfect Graphs. Wiley, New York

    MATH  Google Scholar 

  14. Shepherd F.B. (1995). Applying Lehman’s theorem to packing problems. Math. Program. 71: 353–367

    MathSciNet  Google Scholar 

  15. Wagler A. (2004). Antiwebs are rank-perfect. 4OR 2: 149–152

    Article  MATH  MathSciNet  Google Scholar 

  16. Wagler A. (2005). On rank-perfect subclasses of near-bipartite graphs. 4OR 3: 329–336

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhu X. (2001). Circular chromatic number: a survey. Discrete Math. 229: 371–410

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annegret K. Wagler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coulonges, S., Pêcher, A. & Wagler, A.K. Characterizing and bounding the imperfection ratio for some classes of graphs. Math. Program. 118, 37–46 (2009). https://doi.org/10.1007/s10107-007-0182-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0182-9

Keywords

Mathematics Subject Classification (2000)

Navigation