Skip to main content
Log in

Copositive programming motivated bounds on the stability and the chromatic numbers

  • FULL LENGTH PAPER
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

The Lovász theta number of a graph G can be viewed as a semidefinite programming relaxation of the stability number of G. It has recently been shown that a copositive strengthening of this semidefinite program in fact equals the stability number of G. We introduce a related strengthening of the Lovász theta number toward the chromatic number of G, which is shown to be equal to the fractional chromatic number of G. Solving copositive programs is NP-hard. This motivates the study of tractable approximations of the copositive cone. We investigate the Parrilo hierarchy to approximate this cone and provide computational simplifications for the approximation of the chromatic number of vertex transitive graphs. We provide some computational results indicating that the Lovász theta number can be strengthened significantly toward the fractional chromatic number of G on some Hamming graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bomze I.M., de Klerk E.: Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. J. Global Optim. 24, 163–185 (2001)

    Article  Google Scholar 

  2. Bomze I.M., Dür M., de Klerk E., Roos C., Quist A.J., Terlaky T.: On copositive programming and standard quadratic optimization problems. J. Global Optim. 18, 301–320 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Burer, S.: On the copositive representation of binary and continuos nonconvex quadratic Programs. Working paper (2007)

  4. Busygin S., Pasechnik D.V.: On NP-hardness of the clique partition—independence number gap recognition and related problems. Discrete Math. 306(4), 460–463 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. de Klerk E.: Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  6. de Klerk E., Pasechnik D.V.: Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12, 875–892 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. de Klerk E., Pasechnik D.V., Schrijver A.: Reduction of symmetric semidefinite programs using the regular *-representation. Math. Program. 109(2–3), 613–624 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dukanovic, I.: Semidefinite programming applied to graph coloring problem. Ph.D. thesis, University of Klagenfurt, Austria (2008, forthcoming)

  9. Dukanovic, I., Rendl, F.: Reductions of group symmetric semidefinite programs. Working paper (2005)

  10. Dukanovic I., Rendl F.: Semidefinite programming relaxations for graph coloring and maximal clique problems. Math. Program. B 109(2), 345–366 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gatermann K., Parrilo P.A.: Symmetry groups, semidefinite programs, and sums of squares. J. Pure Appl. Algebra 192, 95–128 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gvozdenović, N., Laurent, M.: Personal communication (2005)

  13. Gvozdenović N., Laurent M.: Semidefinite bounds for the stability number of a graph via sums of squares of polynomials. Lect. Notes Comput. Sci. 3509, 136–151 (2005)

    Article  Google Scholar 

  14. Gvozdenović, N., Laurent, M.: Computing semidefinite programming lower bounds for the (fractional) chromatic number via block-diagonalization. SIAM J. Optim. (2008, to appear)

  15. Gvozdenović, N., Laurent, M.: The operator Ψ for the chromatic number of a graph. SIAM J. Optim. (2008, to appear)

  16. Halperin E., Nathaniel R., Zwick U.: Coloring k-colorable graphs using relatively small palettes. J. Algorithms 45, 72–90 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Karger D., Motwani R., Sudan M.: Approximate graph coloring by semidefinite programming. J. Assoc. Comput. Machinery 45, 246–265 (1998)

    MATH  MathSciNet  Google Scholar 

  18. Knuth D.E.: The sandwich theorem. Electron. J. Combinatorics 1, 1–48 (1994)

    Google Scholar 

  19. Lasserre, J.B.: On explicit exact SDP relaxation for nonlinear 0-1 programs. In: Ardal, K., Gerards, A.M.H. (eds.) Lecture Notes in Computer Science, vol. 2081, pp. 293–303 (2001)

  20. Laurent, M.: Strengthened semidefinite bounds for codes. Preprint, p. 17 (2005)

  21. Laurent M., Rendl F.: Semidefinite programming and integer programming. In: Weismantel, R., Aardal, K., Nemhauser, G.(eds) Handbook on Discrete Optimization., pp. 393–514. Elsevier B. V., Amsterdam (2005)

    Google Scholar 

  22. Lovász L.: On the Shannon capacity of a graph. IEEE Trans. Inform. Theory 25, 1–7 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lovász L., Schrijver A.: Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim. 1, 166–190 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  24. McKay B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)

    MathSciNet  Google Scholar 

  25. Murty K.G., Kabadi S.N.: Some NP-complete problems in quadratic and nonlinear programming. Math. Program. 39, 117–129 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  26. Parrilo, P.A.: Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. Ph.D. thesis, California Institute of Technology (2000)

  27. Peña J., Vera J., Zuluaga L.F.: Computing the stability number of a graph via linear and semidefinite programming. SIAM J. Optim. 18, 87–105 (2007)

    MATH  MathSciNet  Google Scholar 

  28. Povh, J., Rendl, F.: Copositive and semidefinite relaxations of the quadratic assignment problem. Working paper (2006)

  29. Quist A.J., de Klerk E., Roos C., Terlaky T.: Copositive relaxation for general quadratic programming. Optim. Methods Softw. 9, 185–209 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Schrijver A.: A comparison of the Delsarte and Lovász bounds. IEEE Trans. Inform. Theory IT 25, 425–429 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  31. Schrijver A.: Combinatorial Optimization—Polyhedra and Efficiency, vol. B. Springer, New York (2003)

    Google Scholar 

  32. Szegedy, M.: A note on the theta number of Lovász and the generalized Delsarte bound. In: 35th Annual Symposium on Foundations of Computer Science, pp. 36–39 (1994)

  33. Todd M.J.: Semidefinite optimization. Acta Numerica 10, 515–560 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Dukanovic.

Additional information

Partial support by the EU project Algorithmic Discrete Optimization (ADONET), MRTN-CT-2003-504438, is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dukanovic, I., Rendl, F. Copositive programming motivated bounds on the stability and the chromatic numbers. Math. Program. 121, 249–268 (2010). https://doi.org/10.1007/s10107-008-0233-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-008-0233-x

Keywords

Mathematics Subject Classification (2000)

Navigation