Skip to main content
Log in

Copositivity cuts for improving SDP bounds on the clique number

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Adding cuts based on copositive matrices, we propose to improve Lovász’ bound θ on the clique number and its tightening θ′ introduced by McEliece, Rodemich, Rumsey, and Schrijver. Candidates for cheap and efficient copositivity cuts of this type are obtained from graphs with known clique number. The cost of previously established semidefinite programming bound hierarchies starting with θ′ rapidly increases with the order (and quality requirements). By contrast, the bounds proposed here are relatively cheap in the sense that computational effort is comparable to that required for θ′.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bomze I.M.: Copositive optimization. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization, pp. 561–564. Springer, New York (2009)

    Chapter  Google Scholar 

  2. Bomze I.M., Budinich M., Pardalos P., Pelillo M.: The maximum clique problem. In: Du, D.-Z., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization (supp., vol. A), pp. 1–74. Kluwer, Dordrecht (1999)

    Google Scholar 

  3. Bomze, I.M., Frommlet, F., Locatelli, M.: Gap, cosum, and product properties of the θ′ bound on the clique number. To appear in Optimization (2010)

  4. Bomze I.M., Locatelli M., Tardella F.: New and old bounds for standard quadratic optimization: dominance, equivalence and incomparability. Math. Program. 115, 31–64 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Borchers B.: CSDP, a C library for semidefinite programming. Optim. Methods Softw. 11, 613–623 (1999)

    Article  MathSciNet  Google Scholar 

  6. Burer S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. 120, 479–495 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Busygin S.: Copositive programming. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization (2nd edn), pp. 564–567. Springer, New York (2009)

    Google Scholar 

  8. de Klerk E., Pasechnik D.V.: Approximation of the stability number of a graph via copositive programsming. SIAM J. Optim. 12, 875–892 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dukanović I., Rendl F.: Semidefinite programming relaxations for graph coloring and maximal clique problems. Math. Program. B 109, 345–365 (2007)

    Article  MATH  Google Scholar 

  10. Gvozdenović, N., Laurent, M.: Semidefinite bounds for the stability number of a graph via sums of squares of polynomials. In: Lecture Notes in Computer Science, vol. 3509, 136–151. Springer, New York (2005)

  11. Knuth D.E.: The sandwich theorem. Electron. J. Comb. 22, 1–48 (1994)

    Google Scholar 

  12. Lasserre J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lasserre, J.B.: An explicit exact SDP relaxation for nonlinear 0-1 programming. In: Aardal K., Gerards A.H.M. (eds.) Lecture Notes in Computer Science, vol. 2081, 293–303. Springer, New York (2001)

  14. Loefberg, J.: YALMIP : A Toolbox for Modeling and Optimization in MATLAB. In: Proceedings of the CACSD Conference, Taipei, Taiwan (2004)

  15. Lovász L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25, 1–7 (1979)

    Article  MATH  Google Scholar 

  16. McEliece R.J., Rodemich E.R., Rumsey H.C.: The Lovász’ bound and some generalizations. J. Comb. Inf. Syst. Sci. 3, 134–152 (1978)

    MATH  MathSciNet  Google Scholar 

  17. Peña J., Vera J., Zuluaga L.: Computing the stability number of a graph via linear and semidefinite programming. SIAM J. Optim. 18, 87–105 (2007)

    MATH  MathSciNet  Google Scholar 

  18. Schrijver A.: A comparison of the Delsarte and Lovasz bounds. IEEE Trans. Inf. Theory 25, 425–429 (1979)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Immanuel M. Bomze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bomze, I.M., Frommlet, F. & Locatelli, M. Copositivity cuts for improving SDP bounds on the clique number. Math. Program. 124, 13–32 (2010). https://doi.org/10.1007/s10107-010-0363-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-010-0363-9

Keywords

Mathematics Subject Classification (2000)

Navigation