Skip to main content
Log in

Orientation-based models for {0,1,2}-survivable network design: theory and practice

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

We consider {0,1,2}-Survivable Network Design problems with node-connectivity constraints. In the most prominent variant, we are given an edge-weighted graph and two customer sets \({\fancyscript{R}_1}\) and \({\fancyscript{R}_2}\) ; we ask for a minimum cost subgraph that connects all customers, and guarantees two-node-connectivity for the \({\fancyscript{R}_2}\) customers. We also consider an alternative of this problem, in which 2-node-connectivity is only required w.r.t. a certain root node, and its prize-collecting variant. The central result of this paper is a novel graph-theoretical characterization of 2-node-connected graphs via orientation properties. This allows us to derive two classes of ILP formulations based on directed graphs, one using multi-commodity flow and one using cut-inequalities. We prove the theoretical advantages of these directed models compared to the previously known ILP approaches. We show that our two concepts are equivalent from the polyhedral point of view. On the other hand, our experimental study shows that the cut formulation is much more powerful in practice. Moreover, we propose a collection of benchmark instances that can be used for further research on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachhiesl, P.: The OPT- and the SST-problems for real world access network design—basic definitions and test instances. Working Report NetQuest 01/2005, Carinthia Tech Institute, Klagenfurt, Austria (2005)

  2. Brandes, U.: Eager st-ordering. In: Proceedings of the 10th European Symposium on Algorithms (ESA 02), LNCS, vol. 2461, pp. 247–256. Springer (2002)

  3. Cherkassky B.V., Goldberg A.V.: On implementing push-relabel method for the maximum flow problem. Algorithmica 19, 390–410 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chimani, M., Kandyba, M., Ljubić, I., Mutzel, P.: Strong formulations for 2-node-connected Steiner network problems. In: Proceedings of the 2nd Annual International Conference on Combinatorial Optimization and Applications (COCOA 2008), LNCS, vol. 5165, pp. 190–200. Springer (2008)

  5. Chimani M., Kandyba M., Ljubić I., Mutzel P.: Obtaining optimal k-cardinality trees fast. ACM J. Exp. Algorithm. 14(2), 5.1–5.23 (2009)

    Google Scholar 

  6. Chimani, M., Kandyba, M., Mutzel, P.: A new ILP formulation for 2-root-connected prize-collecting Steiner networks. In: Proceedings of the 15th European Symposium on Algorithm (ESA 2007), LNCS, vol. 4698, pp. 681–692. Springer (2007)

  7. Chopra S.: Polyhedra of the equivalent subgraph problem and some edge connectivity problems. SIAM J. Discrete Math. 5(3), 321–337 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Goemans M.X., Myung Y.: A catalog of Steiner tree formulations. Networks 23, 19–28 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Grötschel M., Monma C.L.: Integer polyhedra arising from certain network design problems with connectivity constraints. SIAM J. Discret. Math. 3(4), 502–523 (1990)

    Article  MATH  Google Scholar 

  10. Grötschel, M., Monma, C.L., Stoer, M.: Polyhedral approaches to network survivability. In: Reliability of computer and communication networks, Proceedings of Workshop 1989, Discrete Mathematics and Theoretical Computer Science, vol. 5, pp. 121–141. American Mathematical Society (1991)

  11. Grötschel M., Monma C.L., Stoer M.: Computational results with a cutting plane algorithm for designing communication networks with low-connectivity constraints. Operatios Res. 40(2), 309–330 (1992)

    Article  MATH  Google Scholar 

  12. Grötschel M., Monma C.L., Stoer M.: Facets for polyhedra arising in the design of communication networks with low-connectivity constraints. SIAM J. Optim. 2(3), 474–504 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Johnson, D.S., Minkoff, M., Phillips, S.: The prize-collecting steiner tree problem: Theory and practice. In: Proceedings of 11th ACM-SIAM Symposium on Distcrete Algorithms, pp. 760–769 (2000)

  14. Kerivin H., Mahjoub A.R.: Design of survivable networks: a survey. Networks 46(1), 1–21 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kerivin, H., Mahjoub, A.R., Nocq, C.: (1,2)-Survivable networks: facets and branch-and-cut. In: M. Grötschel (ed.) The Sharpest Cut, MPS-SIAM Series in optimization, pp. 121–152. SIAM (2004)

  16. Koch T., Martin A.: Solving steiner tree problems in graphs to optimality. Networks 32(3), 207–232 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ljubić, I.: Exact and memetic algorithms for two network design problems. Ph.D. thesis, TU Vienna (2004)

  18. Ljubić I., Weiskircher R., Pferschy U., Klau G., Mutzel P., Fischetti M.: An algorithmic framework for the exact solution of the prize-collecting steiner tree problem. Math. Prog. Ser. B 105(2–3), 427–449 (2006)

    Article  MATH  Google Scholar 

  19. Lucena A., Resende M.G.C.: Strong lower bounds for the prize-collecting steiner problem in graphs. Discrete Appl. Math. 141(1–3), 277–294 (2003)

    MathSciNet  Google Scholar 

  20. Magnanti T.L., Raghavan S.: Strong formulations for network design problems with connectivity requirements. Networks 45(2), 61–79 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Monma C.L., Munson B.S., Pulleyblank W.R.: Minimum-weight two-connected spanning networks. Math. Program. 46(2), 153–171 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. Orlowski, S., Pióro, M., Tomaszewski, A., Wessäly, R.: SNDlib 1.0—Survivable Network Design Library. In: Proceedings of the 3rd International Network Optimization Conference (INOC 2007) (2007). http://sndlib.zib.de

  23. Polzin T., Daneshmand S.V.: Improved algorithms for the Steiner problem in networks. Discrete Appl. Math. 112(1–3), 263–300 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Raghavan, S.: Formulations and algorithms for the network design problems with connectivity requirements. Ph.D. thesis, MIT, Cambridge, MA (1995)

  25. Robbins H.: A theorem on graphs with an application to a problem of traffic control. Am. Math. Mon. 46, 281–283 (1939)

    Article  MathSciNet  Google Scholar 

  26. Stoer M.: Design of Survivable Networks, LNCS, vol. 1531. Springer, Berlin (1992)

    Google Scholar 

  27. TSNDLib: Collection of benchmark instances for Topological {0,1,2}-Survivable Network Design problems (2008). http://ls11-www.cs.tu-dortmund.de/TSNDLib/

  28. TSPLIB. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

  29. Wagner, D.: Generierung und Adaptierung von Testinstanzen für das OPT und SST Problem. Tech. Rep. 03/2007, Carinthia Tech Institute, Klagenfurt, Austria (2007). In german

  30. Wagner, D., Raidl, G.R., Pferschy, U., Mutzel, P., Bachhiesl, P.: A multi-commodity flow approach for the design of the last mile in real-world fiber optic networks. In: Proc. OR ’06, pp. 197–202. Springer (2006)

  31. Wagner, D., Raidl, G.R., Pferschy, U., Mutzel, P., Bachhiesl, P.: A directed cut for the design of the last mile in real-world fiber optic networks. In: Proceedings of the International Network Optimization Conference 2007 (2007)

  32. Wolsey L.A.: Integer Programming. Wiley-Interscience, USA (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Chimani.

Additional information

Preliminary parts of this paper appeared at ESA 2007 and COCOA 2008. M. Kandyba was supported by the German Research Foundation (DFG) through the Collaborative Research Center “Computational Intelligence” (SFB 531). I. Ljubić was supported by the Hertha-Firnberg Fellowship of the Austrian Science Foundation (FWF). P. Mutzel was partially supported by the Austrian Research Promotion Agency (FFG) under grant 811378 (NetQuest project).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chimani, M., Kandyba, M., Ljubić, I. et al. Orientation-based models for {0,1,2}-survivable network design: theory and practice. Math. Program. 124, 413–439 (2010). https://doi.org/10.1007/s10107-010-0375-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-010-0375-5

Keywords

Mathematics Subject Classification (2000)

Navigation