Skip to main content
Log in

Optimality functions in stochastic programming

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Optimality functions define stationarity in nonlinear programming, semi-infinite optimization, and optimal control in some sense. In this paper, we consider optimality functions for stochastic programs with nonlinear, possibly nonconvex, expected value objective and constraint functions. We show that an optimality function directly relates to the difference in function values at a candidate point and a local minimizer. We construct confidence intervals for the value of the optimality function at a candidate point and, hence, provide a quantitative measure of solution quality. Based on sample average approximations, we develop an algorithm for classes of stochastic programs that include CVaR-problems and utilize optimality functions to select sample sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basova, H.G.: Reliability-based design optimization using buffered failure probability. Master’s thesis, Naval Postgraduate School, Monterey, California (2010)

  2. Bastin F., Cirillo C., Toint P.L.: An adaptive Monte Carlo algorithm for computing mixed logit estimators. Comput. Manage. Sci. 3(1), 55–79 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bastin F., Cirillo C., Toint P.L.: Convergence theory for nonconvex stochastic programming with an application to mixed logit. Math. Program. 108(2–3), 207–234 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bayraksan, G., Morton, D.P.: Assessing solution quality in stochastic programs via sampling. In: Tutorials in Operations Research, pp. 102–122. INFORMS (2009)

  5. Bayraksan, G., Morton, D.P.: A sequential sampling procedure for stochastic programming. Oper. Res. (2010, to appear)

  6. Bettonvil B., del Castillo E., Kleijnen J.P.C.: Statistical testing of optimality conditions in multiresponse simulation-based optimization. Eur. J. Oper. Res. 199, 448–458 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Billingsley P.: Probability and Measure. Wiley, New York (1995)

    MATH  Google Scholar 

  8. Gill, P., Murray, W., Saunders, M.: User’s guide for SNOPT 5.3: A Fortran package for large-scale nonlinear programming. Technical Report SOL-98-1, System Optimization Laboratory, Stanford University, Stanford, California (1998)

  9. Gürkan G., Robinson A., Robinson S.M.: Sample-path solution of stochastic variational inequalities. Math. Program. 84(2), 313–333 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Higle J.L., Sen S.: Stochastic Decomposition: A Statistical Method for Large Scale Stochastic Linear Programming. Springer, Berlin (1996)

    MATH  Google Scholar 

  11. Higle J.L., Sen S.: Statistical verification of optimality conditions for stochastic programs with recourse. Ann. Oper. Res. 30, 215–240 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Higle J.L., Sen S.: Duality and statistical tests of optimality for two stage stochastic programs. Math. Program. 75, 257–275 (1996)

    MathSciNet  MATH  Google Scholar 

  13. Holmstrom, K.: Tomlab optimization. http://tomopt.com(2009)

  14. Homem-de-Mello T.: Variable-sample methods for stochastic optimization. ACM Trans. Model. Comput. Simul. 13(2), 108–133 (2003)

    Article  Google Scholar 

  15. Homem-de-Mello T., Shapiro A., Spearman M.L.: Finding optimal material release times using simulation-based optimization. Manage. Sci. 45(1), 86–102 (1999)

    Article  MATH  Google Scholar 

  16. Kall P., Meyer J.: Stochastic Linear Programming, Models, Theory, and Computation. Springer, Berlin (2005)

    MATH  Google Scholar 

  17. Kim, S.H., Nelson, B.L.: Selecting the best system. In: Simulation, pp. 501–534. Elsevier, Amsterdam (2006)

  18. Kort, B.W., Bertsekas, D.P.: A New Penalty Function Algorithm for Constrained Minimization. In: Proceedings 1972 IEEE Conference on Decision and Control. New Orlean, Louisiana (1972)

  19. Kushner H.J., Yin G.G.: Stochastic Approximation and Recursive Algorithms and Applications, 2 edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  20. Luedtke J., Ahmed S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19, 674–699 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mak W.K., Morton D.P., Wood R.K.: Monte Carlo bounding techniques for determining solution quality in stochastic programs. Oper. Res. Lett. 24, 47–56 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nemirovski A., Juditsky A., Lan G., Shapiro A.: Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19(4), 1574–1609 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nemirovski A., Shapiro A.: Convex approximations of chance constrained programs. SIAM Optim. 17(4), 969–996 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Norkin V.I., Pflug G.C., Ruszczynski A.: A branch and bound method for stochastic global optimization. Math. Program. 83, 425–450 (1998)

    MathSciNet  MATH  Google Scholar 

  25. Pasupathy R.: On choosing parameters in retrospective-approximation algorithms for stochastic root finding and simulation optimization. Oper. Res. 58(4), 889–901 (2010)

    Article  MATH  Google Scholar 

  26. Pee E.Y., Royset J.O.: On solving large-scale finite minimax problems using exponential smoothing. J. Optim. Theory Appl. 148(2), 390–421 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Polak E.: On the mathematical foundations of nondifferentiable optimization in engineering design. SIAM Rev. 29, 21–89 (1987)

    Article  MathSciNet  Google Scholar 

  28. Polak E.: On the use of consistent approximations in the solution of semi-infinite optimization and optimal control problems. Math. Program. Ser. B 62(1–3), 385–414 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Polak E.: Optimization. Algorithms and Consistent Approximations. Springer, New York (1997)

    MATH  Google Scholar 

  30. Polak E., Royset J.O.: Efficient sample sizes in stochastic nonlinear programming. J. Comput. Appl. Math. 217, 301–310 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rao S.S.: Engineering Optimization Theory and Practice, 4th edn. Wiley, London (2009)

    Google Scholar 

  32. Rockafellar R.T., Royset J.O.: On buffered failure probability in design and optimization of structures. Reliabil. Eng. Syst. Safety 95, 499–510 (2010)

    Article  Google Scholar 

  33. Rockafellar R.T., Uryasev S.: Conditional value-at-risk for general loss distributions. J. Bank. Finance 26, 1443–1471 (2002)

    Article  Google Scholar 

  34. Royset J.O., Der Kiureghian A., Polak E.: Reliability-based optimal design of series structural systems. J. Eng. Mech. 127(6), 607–614 (2001)

    Article  Google Scholar 

  35. Royset J.O., Polak E.: Extensions of stochastic optimization results from problems with simple to problems with complex failure probability functions. J. Optim. Theory Appl. 133(1), 1–18 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sakalauskas L.L.: Nonlinear stochastic programming by Monte-Carlo estimators. Eur. J. Oper. Res. 137, 558–573 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sakalauskas, L.L.: Towards implementable nonlinear stochastic programming. In: Coping with Uncertainty, pp. 257–279. Springer, Berlin (2006)

  38. Samson, S., Thoomu, S., Fadel, G., Reneke, J.: Reliable design optimization under aleatory and epistemic uncertainty. In: Proceedings of ASME 2009 International Design Engineering Technical Conferences, pp. DETC2009-86473 (2009)

  39. Shapiro A.: Asymptotic behavior of optimal solutions in stochastic programming. Math. Oper. Res. 18(4), 829–845 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shapiro, A.: Testing KKT conditions. Private Communication, June 2 (2003)

  41. Shapiro A., Dentcheva D., Ruszczynski A.: Lectures on Stochastic Programming: Modeling and Theory. Society of Industrial and Applied Mathematics, Philadelphia (2009)

    Book  MATH  Google Scholar 

  42. Shapiro A., Homem-de-Mello T.: A simulation-based approach to two-stage stochastic programming with recourse. Math. Program. 81, 301–325 (1998)

    MathSciNet  MATH  Google Scholar 

  43. Shapiro A., Xu H.: Uniform laws of large numbers for set-valued mappings and subdifferentials of random functions. J. Math. Anal. Appl. 325, 1390–1399 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Spall J.C.: Introduction to Stochastic Search and Optimization. Wiley, New York (2003)

    Book  MATH  Google Scholar 

  45. Tong X., Qi L., Wu F., Zhou H.: A smoothing method for solving portfolio optimization with CVaR and applications in allocation of generation asset. Appl. Math. Comput. 216, 1723–1740 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wallace S.W., Ziemba W.T.: Applications of Stochastic Programming. Society for Industrial and Applied Mathematics, Philadelphia (2005)

    Book  MATH  Google Scholar 

  47. Wang W., Ahmed S.: Sample average approximation of expected value constrained stochastic programs. Oper. Res. Lett. 36(5), 515–519 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Xu H., Zhang D.: Smooth sample average approximation of stationary points in nonsmooth stochastic optimization and applications. Math. Program. 119, 371–401 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. O. Royset.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Royset, J.O. Optimality functions in stochastic programming. Math. Program. 135, 293–321 (2012). https://doi.org/10.1007/s10107-011-0453-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-011-0453-3

Keywords

Mathematics Subject Classification (2000)

Navigation