Skip to main content
Log in

A probability metrics approach for reducing the bias of optimality gap estimators in two-stage stochastic linear programming

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Monte Carlo sampling-based estimators of optimality gaps for stochastic programs are known to be biased. When bias is a prominent factor, estimates of optimality gaps tend to be large on average even for high-quality solutions. This diminishes our ability to recognize high-quality solutions. In this paper, we present a method for reducing the bias of the optimality gap estimators for two-stage stochastic linear programs with recourse via a probability metrics approach, motivated by stability results in stochastic programming. We apply this method to the Averaged Two-Replication Procedure (A2RP) by partitioning the observations in an effort to reduce bias, which can be done in polynomial time in sample size. We call the resulting procedure the Averaged Two-Replication Procedure with Bias Reduction (A2RP-B). We provide conditions under which A2RP-B produces strongly consistent point estimators and an asymptotically valid confidence interval. We illustrate the effectiveness of our approach analytically on a newsvendor problem and test the small-sample behavior of A2RP-B on a number of two-stage stochastic linear programs from the literature. Our computational results indicate that the procedure effectively reduces bias. We also observe variance reduction in certain circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailey T., Jensen P., Morton D.: Response surface analysis of two-stage stochastic linear programming with recourse. Nav. Res. Logist. 46, 753–778 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bayraksan G., Morton D.: Assessing solution quality in stochastic programs. Math. Program. 108, 495–514 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bayraksan G., Morton D.: Assessing solution quality in stochastic programs via sampling. In: Oskoorouchi, M.R. (ed.) INFORMS TutORials in Operations Research, vol. 6, pp. 102–122. INFORMS, Hanover, MD (2009)

  4. Bayraksan G., Morton D.: A sequential sampling procedure for stochastic programming. Oper. Res. 59, 898–913 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertocchi M., Dupačová J., Moriggia V.: Sensitivity of bond portfolio’s behavior with respect to random movements in yield curve: a simulation study. Ann. Oper. Res. 99, 267–286 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Birge, J.: Quasi-Monte Carlo approaches to option pricing. Technical report 94-19, Department of Industrial and Operations Engineering, University of Michigan (1994)

  7. Dantzig, G., Infanger, G.: A probabilistic lower bound for two-stage stochastic programs. Technical report SOL 95-6, Department of Operations Research, Stanford University (1995)

  8. Drew, S., de Mello, T.H.: Quasi-Monte Carlo strategies for stochastic optimization. In: Proceedings of the 2006 Winter Simulation Conference, pp. 774–782 (2006)

  9. Dupačová J., Gröwe-Kuska N., Römisch W.: Scenario reduction in stochastic programming: an approach using probability metrics. Math. Program. 95, 493–511 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Efron B., Tibshirani R.: An Introduction to the Bootstrap. Chapman & Hall, New York (1993)

    Book  MATH  Google Scholar 

  11. Ferguson A., Dantzig G.: The allocation of aircraft to routes: an example of linear programming under uncertain demands. Manag. Sci. 3, 45–73 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  12. Freimer M.B., Thomas D.J., Linderoth J.T.: The impact of sampling methods on bias and variance in stochastic linear programs. Comput. Optim. Appl. 51(1), 51–75 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Heitsch H., Römisch W.: Scenario reduction algorithms in stochastic programming. Comput. Optim. Appl. 24, 187–206 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Henrion R., Küchler C., Römisch W.: Scenario reduction in stochastic programming with respect to discrepancy distances. Comput. Optim. Appl. 43, 67–93 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Higle J.: Variance reduction and objective function evaluation in stochastic linear programs. INFORMS J. Comput. 10, 236–247 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Higle J., Sen S.: Statistical verification of optimality conditions for stochastic programs with recourse. Ann. Oper. Res. 30, 215–240 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Higle J., Sen S.: Stochastic decomposition: an algorithm for two-stage linear programs with recourse. Math. Oper. Res. 16, 650–669 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Higle J., Sen, S. (1996) Stochastic Decomposition: A Statistical Method for Large Scale Stochastic Linear Programming. Kluwer, Dordrecht

  19. Higle J., Sen S.: Statistical approximations for stochastic linear programming problems. Ann. Oper. Res. 85, 173–192 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Homem-de-Mello T.: On rates of convergence for stochastic optimization problems under non-i.i.d. sampling. SIAM J. Optim. 19, 524–551 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Infanger G.: Monte Carlo (importance) sampling within a Benders decomposition algorithm for stochastic linear programs. Ann. Oper. Res. 39, 69–95 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kenyon A., Morton D.: Stochastic vehicle routing with random travel times. Transp. Sci. 37, 69–82 (2003)

    Article  Google Scholar 

  23. Koivu M.: Variance reduction in sample approximations of stochastic programs. Math. Program. 103, 463–485 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kolmogorov V.: Blossom V: a new implementation of a minimum cost perfect matching algorithm. Math. Program. Comput. 1, 43–67 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lan, G., Nemirovski, A., Shapiro, A.: Validation analysis of robust stochastic approximation method. Math. Program. (2011). doi:10.1007/s10107-011-0442-6

  26. Linderoth J., Shapiro A., Wright S.: The empirical behavior of sampling methods for stochastic programming. Ann. Oper. Res. 142, 219–245 (2006)

    Article  MathSciNet  Google Scholar 

  27. Mak W., Morton D., Wood R.: Monte Carlo bounding techniques for determining solution quality in stochastic programs. Oper. Res. Lett. 24, 47–56 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mehlhorn, K., Schäfer, G.: Implementation of O(nmlog n) weighted matchings in general graphs: the power of data structures. J. Exp. Algorithm. 7 (2002). doi:10.1145/944618.944622

  29. Norkin V., Pflug G., Ruszczyński A.: A branch and bound method for stochastic global optimization. Math. Program. 83, 425–450 (1998)

    MATH  Google Scholar 

  30. Partani, A.: Adaptive jacknife estimators for stochastic programming. Ph.D. thesis, The University of Texas at Austin (2007)

  31. Partani, A., Morton, D., Popova, I.: Jackknife estimators for reducing bias in asset allocation. In: Proceedings of the 2006 Winter Simulation Conference, pp. 783–791 (2006)

  32. Rachev S.T.: Probability Metrics and the Stability of Stochastic Models. Wiley, New York (1991)

    MATH  Google Scholar 

  33. Rockafellar R., Wets R.B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  34. Römisch W.: Stability of stochastic programming problems. In: Ruszczyński, A., Shapiro, A. (eds) Handbooks in Operations Research and Management Science, vol. 10: Stochastic Programming, pp. 483–554. Elsevier, Amsterdam (2003)

    Google Scholar 

  35. Ruszczyński A.: A regularized decomposition method for minimizing a sum of polyhedral functions. Math. Program. 35, 309–333 (1986)

    Article  MATH  Google Scholar 

  36. Ruszczyński A., Świetanowski A.: Accelerating the regularized decomposition method for two stage stochastic linear problems. Eur. J. Oper. Res. 101, 328–342 (1997)

    Article  MATH  Google Scholar 

  37. Santoso T., Ahmed S., Goetschalckx M., Shapiro A.: A stochastic programming approach for supply chain network design under uncertainty. Eur. J. Oper. Res. 167, 96–115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shao J., Tu D.: The Jackknife and Bootstrap. Springer, New York (1995)

    Book  MATH  Google Scholar 

  39. Shapiro A.: Monte Carlo sampling methods. In: Ruszczyński, A., Shapiro, A. (eds) Handbooks in Operations Research and Management Science, vol. 10: Stochastic Programming, pp. 353–425. Elsevier, Amsterdam (2003)

    Google Scholar 

  40. Shapiro A., Homem-de-Mello T.: A simulation-based approach to two-stage stochastic programming with recourse. Math. Program. 81, 301–325 (1998)

    MathSciNet  MATH  Google Scholar 

  41. Verweij B., Ahmed S., Kleywegt A., Nemhauser G., Shapiro A.: The sample average approximation method applied to stochastic vehicle routing problems: a computational study. Comput. Optim. Appl. 24, 289–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wagner, R.: Mersenne twister random number generator. http://svn.mi.fu-berlin.de/seqan/releases/seqan_1.3/seqan/random/ext_MersenneTwister.h (2009). Last accessed June 7 2012

  43. Wets R.: Stochastic programming: solution techniques and approximation schemes. In: Bachem, A., Grötschel, M., Korte, B. (eds) Mathematical Programming: The State of the Art (Bonn 1982), pp. 560–603. Springer, Berlin (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Güzin Bayraksan.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (PDF 171 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stockbridge, R., Bayraksan, G. A probability metrics approach for reducing the bias of optimality gap estimators in two-stage stochastic linear programming. Math. Program. 142, 107–131 (2013). https://doi.org/10.1007/s10107-012-0563-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-012-0563-6

Keywords

Mathematics Subject Classification (2000)

Navigation