Skip to main content
Log in

An LP-Newton method: nonsmooth equations, KKT systems, and nonisolated solutions

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We define a new Newton-type method for the solution of constrained systems of equations and analyze in detail its properties. Under suitable conditions, that do not include differentiability or local uniqueness of solutions, the method converges locally quadratically to a solution of the system, thus filling an important gap in the existing theory. The new algorithm improves on known methods and, when particularized to KKT systems derived from optimality conditions for constrained optimization or variational inequalities, it has theoretical advantages even over methods specifically designed to solve such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Behling, R., Fischer, A.: A unified local convergence analysis of inexact constrained Levenberg-Marquardt methods. Optim. Lett. 6, 927–940 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  MATH  Google Scholar 

  3. Dan, H., Yamashita, N., Fukushima, M.: A superlinearly convergent algorithm for the monotone nonlinear complementarity problems without uniqueness and nondegeneracy conditions. Math. Oper. Res. 27, 743–753 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dong, Y., Fischer, A.: A framework for analyzing local convergence properties with applications to proximal-point algorithms. J. Optim. Theory Appl. 131, 53–68 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Facchinei, F., Fischer, A., Herrich. M.: A family of Newton methods for nonsmooth constrained systems with nonisolated solutions. Math. Methods Oper. Res. (2012). doi:10.1007/s00186-012-0419-0

  6. Facchinei, F., Fischer, A., Kanzow, C.: On the accurate identification of active constraints. SIAM J. Optim. 9, 14–32 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Facchinei, F., Fischer, A., Kanzow, C.: On the identification of zero variables in an interior-point framework. SIAM J. Optim. 10, 1058–1078 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Facchinei, F., Fischer, A., Kanzow, C., Peng, J.-M.: A simply constrained optimization reformulation of KKT systems arising from variational inequalities. Appl. Math. Optim. 40, 19–37 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Facchinei, F., Fischer, A., Piccialli, V.: Generalized Nash equilibrium problems and Newton methods. Math. Program. 117, 163–194 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Facchinei, F., Kanzow, C.: A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems. Math. Program. 76, 493–512 (1997)

    MATH  MathSciNet  Google Scholar 

  11. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. 4OR 5, 173–210 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Facchinei, F., Pang, J.-S.: Finite Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  13. Fan, J.Y., Yuan, Y.X.: On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption. Computing 74, 23–39 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fernández, D., Solodov, M.: Stabilized sequential quadratic programming for optimization and a stabilized Newton-type method for variational problems. Math. Program. 125, 47–73 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fischer, A.: Solution of monotone complementarity problems with locally Lipschitzian functions. Math. Program. 76, 513–532 (1997)

    MATH  Google Scholar 

  16. Fischer, A.: Modified Wilson’s method for nonlinear programs with nonunique multipliers. Math. Oper. Res. 24, 699–727 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fischer, A.: Local behavior of an iterative framework for generalized equations with nonisolated solutions. Math. Program. 94, 91–124 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fischer, A., Shukla, P.K.: A Levenberg-Marquardt algorithm for unconstrained multicriteria optimization. Oper. Res. Lett. 36, 643–646 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fischer, A., Shukla, P.K., Wang, M.: On the inexactness level of robust Levenberg-Marquardt methods. Optimization 59, 273–287 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hager, W.W.: Stabilized sequential quadratic programming. Comput. Optim. Appl. 12, 253–273 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hoffman, A.J.: On approximate solutions of systems of linear equations and inequalities. J. Res. Natl. Bur. Stand. 49, 263–265 (1952)

    Article  Google Scholar 

  22. Izmailov, A.F., Kurennoy, A.S., Solodov, M.V.: The Josephy-Newton method for semismooth generalized equations and semismooth SQP for optimization. Set-Valued Var. Anal. 21, 17–45 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Izmailov, A.F., Solodov, M.V.: Newton-type methods for optimization problems without constraint qualifications. SIAM J. Optim. 15, 210–228 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Izmailov, A.F., Solodov, M.V.: Stabilized SQP revisited. Math. Program. 133, 93–120 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kanzow, C.: Strictly feasible equation-based methods for mixed complementarity problems. Numer. Math. 89, 135–160 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kanzow, C., Yamashita, N., Fukushima, M.: Levenberg-Marquardt methods with strong local convergence properties for solving equations with convex constraints. J. Comput. Appl. Math. 172, 375–397 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  28. Kummer, B.: Newton’s method for non-differentiable functions. In: Guddat, J., et al. (eds.) Mathematical Research Advances in Mathematical Optimization, pp. 114–125. Akademie Verlag, Berlin (1988)

    Google Scholar 

  29. Luque, F.J.: Asymptotic convergence analysis of the proximal point algorithm. SIAM J. Control Optim. 22, 277–293 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ng, K.F., Zheng, X.Y.: Error bounds of constrained quadratic functions and piecewise affine inequality systems. J. Optim. Theory Appl. 118, 601–618 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Oberlin, C., Wright, S.: Active constraint identification in nonlinear programming. SIAM J. Optim. 17, 577–605 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–244 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  33. Qi, H., Qi, L., Sun, D.: Solving Karush-Kuhn-Tucker systems via trust region and conjugate gradient methods. SIAM J. Optim. 14, 439–463 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  35. Scholtes, S.: Introduction to Piecewise Differentiable Equations. Springer, New York (2012)

    Book  MATH  Google Scholar 

  36. Shukla, P.K.: Levenberg-Marquardt Algorithms for Nonlinear Equations, Multi-objective Optimization and Complementarity Problems. Dissertation, Technische Universität Dresden, Dresden (2010)

    Google Scholar 

  37. Tseng, P.: Growth behavior of a class of merit functions for the nonlinear complementarity problem. J. Optim. Theory Appl. 89, 17–37 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  38. Ulbrich, M.: Nonmonotone trust-region methods for bound-constrained semismooth equations with applications to mixed complementarity problems. SIAM J. Optim. 11, 889–917 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wright, S.: Superlinear convergence of a stabilized SQP method to a degenerate solution. Comput. Optim. Appl. 11, 253–275 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wright, S.: Constraint identification and algorithm stabilization for degenerate nonlinear programs. Math. Program. 95, 137–160 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  41. Wright, S.: An algorithm for degenerate nonlinear programming with rapid local convergence. SIAM J. Optim. 15, 673–696 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  42. Yamashita, N., Fukushima, M.: On the rate of convergence of the Levenberg-Marquardt method. Comput. [Suppl.] 15, 239–249 (2001)

    Google Scholar 

  43. Zhou, G., Qi, L.: On the convergence of an inexact Newton-type method. Oper. Res. Lett. 34, 647–652 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We wish to thank the anonymous referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Fischer.

Additional information

Part of this research was done while the second author was visiting the Department of Computer, Control, and Management Engineering Antonio Ruberti at the University of Rome La Sapienza. The financial support by the University of Rome La Sapienza is kindly acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Facchinei, F., Fischer, A. & Herrich, M. An LP-Newton method: nonsmooth equations, KKT systems, and nonisolated solutions. Math. Program. 146, 1–36 (2014). https://doi.org/10.1007/s10107-013-0676-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-013-0676-6

Keywords

Mathematics Subject Classification (2000)

Navigation