Skip to main content
Log in

Copositivity and constrained fractional quadratic problems

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We provide Completely Positive and Copositive Optimization formulations for the Constrained Fractional Quadratic Problem (CFQP) and Standard Fractional Quadratic Problem (StFQP). Based on these formulations, Semidefinite Programming relaxations are derived for finding good lower bounds to these fractional programs, which can be used in a global optimization branch-and-bound approach. Applications of the CFQP and StFQP, related with the correction of infeasible linear systems and eigenvalue complementarity problems are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Amaral, P., Barahona, P.: Connections between the total least squares and the correction of an infeasible system of linear inequalities. Linear Algebra Appl. 395, 191–210 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amaral, P., Júdice, J., Sherali, H.D.: A reformulation-linearization-convexification algorithm for optimal correction of an inconsistent system of linear constraints. Comput. Oper. Res. 35, 1494–1509 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Anstreicher, K.M., Burer, S.: Computable representations for convex hulls of low-dimensional quadratic forms. Math. Program. 124(1–2, Ser. B), 33–43 (2010)

    Google Scholar 

  4. Anstreicher, K.M., Burer, S.: D.C. versus copositive bounds for standard QP. J. Glob. Optim. 33, 299–312 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Anstreicher, K.M.: Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Glob. Optim. 43, 471–484 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Audet, C., Hansen, P., Jaumard, B., Savard, G.: A branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Math. Program. 87, 131–152 (2000)

    MATH  MathSciNet  Google Scholar 

  7. Beck, A., Ben-Tal, A., Teboulle, M.: Finding global optimal solution for a quadratically constrained fractional quadratic problem with applications to the regularized total least squares. SIAM J. Matrix Anal. Appl. 28, 425–445 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Beck, A., Teboulle, M.: A convex optimization approach for minimizing the ratio of indefinite quadratic functions over an ellipsoid. Math. Program. 118(1), 13–35 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bomze, I.M., Dür, M., De Klerk, E., Roos, C., Quist, A.J., Terlaky, T.: On copositive programming and standard quadratic optimization problems. J. Glob. Optim. 18, 301–320 (2000)

    Article  MATH  Google Scholar 

  10. Bomze, I.M., de Klerk, E.: Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. J. Glob. Optim. 24(2), 163–185 (2002)

    Article  MATH  Google Scholar 

  11. Bomze, I.M., Locatelli, M., Tardella, F.: New and old bounds for standard quadratic optimization: dominance, equivalence and incomparability. Math. Program. 115, 31–64 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bomze, I.M.: Copositive optimization—recent developments and applications. Eur. J. Oper. Res. 216, 509–520 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bomze, I.M., Schachinger, W., Uchida, G.: Think co(mpletely )positive !—matrix properties, examples and a clustered bibliography on copositive optimization. J. Glob. Optim. 52, 423–445 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bomze, I.M., Eichfelder, G.: Copositivity detection by difference-of-convex decomposition and \(\omega \)-subdivision. Math. Program. 138, 365–400 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bundfuss, S., Dür, M.: Algorithmic copositivity detection by simplicial partition. Linear Algebra Appl. 428, 1511–1523 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bundfuss, S., Dür, M.: An adaptive linear approximation algorithm for copositive programs. SIAM J. Optim. 20, 30–53 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Burer, S.: Copositive programming. In: Anjos, M.F., Lasserre, J.B. (eds.) Handbook of Semidefinite, Cone and Polynomial Optimization: Theory, Algorithms, Software and Applications, pp. 201–218. International Series in Operations Research and Management Science. Springer, New York (2012)

  18. Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. 120, 479–495 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Costa, A.P., Figueiredo, I.N., Júdice, J., Martins, J.A.C.: The directional instability problem in systems with frictional contacts. Comput. Methods Appl. Mech. Eng. 193, 357–384 (2004)

    Article  MATH  Google Scholar 

  20. Dickinson, P.J.C., Gijben, L.: On the computational complexity of membership problems for the completely positive cone and its dual. Technical Report, Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, The Netherlands. http://www.optimization-online.org/DB_HTML/2011/05/3041.html (2011)

  21. Dong, H.: Symmetric tensor approximation hierarchies for the completely positive cone. Working paper, Dept. of Management Sciences, University of Iowa, Iowa City, IA. http://www.optimization-online.org/DB_HTML/2010/11/2791.html (2010)

  22. Dür, M.: Copositive programming—a survey. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds.) Recent Advances in Optimization and its Applications in Engineering, pp. 3–20. Springer, Berlin (2010)

    Chapter  Google Scholar 

  23. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  24. Golub, G.H., Hansen, P.C., O’Leary, D.P.: Tikhonov regularization and total least squares. SIAM J. Matrix Anal. Appl. 21, 185–194 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gotoh, J.-Y., Konno, H.: Maximization of the ratio of two convex quadratic functions over a polytope. Comput. Optim. Appl. 20(1), 43–60 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gvozdenovic, N., Laurent, M.: The operator \(\Psi \) for the chromatic number of a graph. SIAM J.Optim. 19(2), 572–591 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hall, M. Jr., Newman, M.: Copositive and completely positive quadratic forms. Proc. Camb. Philos. Soc. 59, 329–339 (1963)

    Google Scholar 

  28. Henrion, D., Lasserre, J.B., Löfberg, J.: Gloptipoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24, 761–779 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Jibetean, D., de Klerk, E.: Global optimization of rational functions: a semidefinite programming approach. Math. Program. 106(1, Ser. A), 93–109 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Júdice, J., Raydan, S., Rosa, S., Santos, S.: On the solution of the symetric eigenvalue complementarity problem by the spectral projected gradient algorithm. Numer. Algorithms 47, 391–407 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Júdice, J., Sherali, H.D., Ribeiro, I.M., Rosa, S.: On the asymetric eigenvalue complementarity problem. Optim. Methods Softw. 24, 549–568 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  33. Linderoth, J.: A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Program. 103, 251–282 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Löfberg, J.: Yalmip : a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference. Taipei, Taiwan (2004)

  35. Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and nonlinear programming. Math. Programm. 39(2), 117–129 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  36. Parrilo, P.A.: Structured Semidefinite Programs and Semi-algebraic Geometry Methods in Robustness and Optimization. PhD thesis, California Institute of Technology, Pasadena, CA (2000)

  37. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96(2, Ser. B), 293–320 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  38. Peña, J., Vera, J., Zuluaga, J.F.: Computing the stability number of a graph via linear and semidefinite programming. SIAM J. Optim. 18(1), 87–105 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  39. Preisig, J.C.: Copositivity and the minimization of quadratic functions with nonnegativity and quadratic equality constraints. SIAM J. Control Optim. 34(4), 1135–1150 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  40. Queiroz, M.G., Júdice, J.J. Humes, Jr. C.: The symmetric eigenvalue complementarity problem. Math. Comput. 73, 1849–1863 (2004)

    Google Scholar 

  41. Renaut, R., Guo, A.H.: A regularized total least squares algorithm. In: Van Huffel, S., Lemmerling, P. (eds.) Total Least Squares and Errors-in-Variables Modeling: Analysis, Algorithms and Applications, pp. 57–66. Kluwer, Dordrecht (2002)

    Google Scholar 

  42. Renaut, R., Guo, A.H.: Efficient algorithms for solution of regularized total least squares. SIAM J. Matrix Anal. Appl. 26(2), 457–476 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  43. Sahinidis, N., Tawarmalani, M.: BARON: The GAMS Solver Manual. GAMS Development Corporation. Washington (2004)

  44. Seeger, A.: Eigenvalue analysis of equilibrium processes defined by linear complemetarity condition. Linear Algebra Appl. 292, 1–14 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  45. Sima, D.M., Van Huffel, S., Golub, G.H.: Regularized total least squares based on quadratic eigenvalue problem solvers. Bit Numer. Mathe. 44(4), 793–812 (2004)

    Article  MATH  Google Scholar 

  46. Sturm, J.F.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  47. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  48. Yamamoto, R., Konno, H.: An efficient algorithm for solving convex-convex quadratic fractional programs. J. Optim. Theory Appl. 133(2), 241–255 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  49. Yıldırım, E.A.: On the accuracy of uniform polyhedral approximations of the copositive cone. Optim. Methods Softw. 27(1), 155–173 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are indebted to two anonymous referees and an anonymous Associate Editor for valuable remarks which led to several improvements of a previous version; for instance, Subsect. 2.2 was added upon the suggestions of a referee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Immanuel M. Bomze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amaral, P., Bomze, I.M. & Júdice, J. Copositivity and constrained fractional quadratic problems. Math. Program. 146, 325–350 (2014). https://doi.org/10.1007/s10107-013-0690-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-013-0690-8

Mathematics Subject Classification (2010)

Navigation