Skip to main content
Log in

Intrinsic volumes of symmetric cones and applications in convex programming

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We express the probability distribution of the solution of a random (standard Gaussian) instance of a convex cone program in terms of the intrinsic volumes and curvature measures of the reference cone. We then compute the intrinsic volumes of the cone of positive semidefinite matrices over the real numbers, over the complex numbers, and over the quaternions in terms of integrals related to Mehta’s integral. In particular, we obtain a closed formula for the probability that the solution of a random (standard Gaussian) semidefinite program has a certain rank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In fact, intrinsic volumes are usually defined for intersections of convex cones with the unit sphere. We adopt the conical viewpoint for technical reasons, and also adopt a convenient shift in the indices of the intrinsic volumes compared to [5, 18, 19, 36].

  2. Some authors differentiate between faces and exposed faces, cf. for example [35]. We do not make this distinction as for the cones we are interested in both notions coincide.

References

  1. Adler, I., Berenguer, S.E.: Random Linear Programs. Operations Research Center Report, No. 81–4. University of California, Berkeley, CA (1981)

  2. Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York (2007)

    Google Scholar 

  3. Alizadeh, F., Haeberly, J.-P.A., Overton, M.L.: Complementarity and nondegeneracy in semidefinite programming. Math. Program. 77(2, Ser. B), 111–128 (1997). Semidefinite programming

  4. Allendoerfer, C.B.: Steiner’s formulae on a general \(S^{n+1}\). Bull. Am. Math. Soc. 54, 128–135 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  5. Amelunxen, D.: Geometric Analysis of the Condition of the Convex Feasibility Problem. PhD Thesis. Universität Paderborn (2011)

  6. Amelunxen, D., Bürgisser, P.: Intrinsic volumes of symmetric cones. arXiv 1205.1863

  7. Amelunxen, D., Bürgisser, P.: Probabilistic analysis of the Grassmann condition number. arXiv:1112.2603v1 [math.OC]

  8. Barvinok, A.: A Course in Convexity, Graduate Studies in Mathematics, vol. 54. American Mathematical Society, Providence, RI (2002)

    Google Scholar 

  9. Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization. MPS/SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001. Analysis, algorithms, and engineering applications

  10. Berenguer, S.E.: Random Linear Programs. PhD Thesis, University of California, Berkeley, CA (1978)

  11. von Bothmer, H.-C.G., Ranestad, K.: A general formula for the algebraic degree in semidefinite programming. Bull. Lond. Math. Soc. 41(2), 193–197 (2009)

    Google Scholar 

  12. Cheung, D., Cucker, F.: Solving linear programs with finite precision. I. Condition numbers and random programs. Math. Program. 99(1, Ser. A), 175–196 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. do Carmo, M.P.: Riemannian Geometry. Mathematics: Theory & Applications. Birkhäuser Boston, Boston, MA (1992). Translated from the second Portuguese edition by Francis Flaherty

  14. Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (1994). Oxford Science Publications

  15. Faybusovich, L.: Euclidean Jordan algebras and interior-point algorithms. Positivity 1(4), 331–357 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Forrester, P.J., Warnaar, S.O.: The importance of the Selberg integral. Bull. Am. Math. Soc. (N.S.) 45(4), 489–534 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fulton, W., Harris, J.: Representation theory, volume 129 of Graduate Texts in Mathematics. Springer, New York (1991). A first course, Readings in Mathematics

  18. Glasauer, S.: Integralgeometrie konvexer Körper im sphärischen Raum. PhD Thesis, Universität Freiburg im Breisgau (1995)

  19. Glasauer, S.: Integral geometry of spherically convex bodies. Diss. Summ. Math. 1(1–2), 219–226 (1996)

    MathSciNet  Google Scholar 

  20. Güler, O.: Barrier functions in interior point methods. Math. Oper. Res. 21(4), 860–885 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hauser, R.A., Güler, O.: Self-scaled barrier functions on symmetric cones and their classification. Found. Comput. Math. 2(2), 121–143 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces, Pure and Applied Mathematics, vol. 80. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1978)

    Google Scholar 

  23. Herglotz, G.: Über die Steinersche Formel für Parallelflächen. Abh. Math. Sem. Univ. Hamburg 15, 165–177 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  24. Howard, R.: The kinematic formula in Riemannian homogeneous spaces. Mem. Am. Math. Soc. 106(509), vi+69 (1993)

    Google Scholar 

  25. Hug, D., Schneider, R.: Kinematic and Crofton formulae of integral geometry: recent variants and extensions (survey), pp. 51–80 (2002). Homenatge al professor Lluís Santalói. Sors: 22 de novembre de 2002 / C. Barcelói Vidal (ed.), Girona: Universitat de Girona. Càtedra Lluís Santaló d’Aplicacions de la Matemàtica

  26. Kohlmann, P.: Curvature measures and Steiner formulae in space forms. Geom. Dedicata 40(2), 191–211 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  27. May, J.H., Smith, R.L.: Random polytopes: their definition, generation and aggregate properties. Math. Program. 24(1), 39–54 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  28. Mehta, M.L.: Random Matrices, Pure and Applied Mathematics (Amsterdam), vol. 142. Elsevier/Academic Press, Amsterdam (2004)

    Google Scholar 

  29. Nesterov, Yu.E., Todd, M.J.: Self-scaled barriers and interior-point methods for convex programming. Math. Oper. Res. 22(1), 1–42 (1997)

    Google Scholar 

  30. Nesterov, Yu.E., Todd, M.J.: Primal-dual interior-point methods for self-scaled cones. SIAM J. Optim. 8(2), 324–364 (electronic) (1998)

    Google Scholar 

  31. Nie, J., Ranestad, K., Sturmfels, B.: The algebraic degree of semidefinite programming. Math. Program. 122(2), 379–405 (2009)

    Article  MathSciNet  Google Scholar 

  32. Renegar, J.: A Mathematical View of Interior-Point Methods in Convex Optimization. MPS/SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2001)

    Book  MATH  Google Scholar 

  33. Rudelson, M., Vershynin, R.: Smallest singular value of a random rectangular matrix. Commun. Pure Appl. Math. 62(12), 1707–1739 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  34. Santaló, L.A.: On parallel hypersurfaces in the elliptic and hyperbolic \(n\)-dimensional space. Proc. Am. Math. Soc. 1, 325–330 (1950)

    Article  MATH  Google Scholar 

  35. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  36. Schneider, R., Weil, W.: Stochastic and Integral Geometry. Probability and its Applications (New York). Springer, Berlin (2008)

    Google Scholar 

  37. Spivak, M.: A Comprehensive Introduction to Differential Geometry, 3rd edn, vol. I. Publish or Perish, Wilmington, Del. (2005)

  38. Sporyshev, P.V.: An application of integral geometry to the theory of linear inequalities. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 123, 208–220 (1983). Differential geometry, Lie groups and mechanics, V

  39. Tao, T., Vu, V.: Smooth analysis of the condition number and the least singular value. Math. Comput. 79(272), 2333–2352 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  40. Thorpe, J.A.: Elementary topics in differential geometry. Undergraduate Texts in Mathematics. Springer, New York (1994)

    Google Scholar 

  41. Wendel, J.G.: A problem in geometric probability. Math. Scand. 11, 109–111 (1962)

    MATH  MathSciNet  Google Scholar 

  42. Weyl, H.: On the volume of tubes. Am. J. Math. 61(2), 461–472 (1939)

    Article  MathSciNet  Google Scholar 

  43. Zhang, F.: Quaternions and matrices of quaternions. Linear Algebra Appl. 251, 21–57 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Michael B. McCoy for pointing out that almost sure nonvanishing is the only assumption on \(b\) that is needed in a standard Gaussian (CP). We are grateful to the anonymous referees for comments that led to a more structured presentation. This work has been supported by the grants AM 386/1-1 and BU 1371/2-2 of the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Amelunxen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amelunxen, D., Bürgisser, P. Intrinsic volumes of symmetric cones and applications in convex programming. Math. Program. 149, 105–130 (2015). https://doi.org/10.1007/s10107-013-0740-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-013-0740-2

Keywords

Mathematics Subject Classification (2000)

Navigation