Skip to main content
Log in

A nonlinear semidefinite optimization relaxation for the worst-case linear optimization under uncertainties

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper, we consider the so-called worst-case linear optimization (WCLO) with uncertainties in the right-hand-side of the constraints. Such a problem arises from numerous applications such as systemic risk estimate in finance and stochastic optimization. We first show the problem is NP-hard and present a coarse semidefinite relaxation (SDR) for WCLO. An iterative procedure is introduced to sequentially refine the relaxation model based on the solution of the current relaxation model by simply changing some parameters in the coarse SDR. We show that the sequence of the proposed SDRs will converge to some nonlinear semidefinite optimization problem (SDO). A bi-section search algorithm is proposed to solve the resulting nonlinear SDO. Our preliminary experimental results illustrate that the nonlinear SDR can provide very tight bounds for the original WCLO and is able to locate the exact global solution in most cases within a few iterations on average.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The relaxation model of the randomly generated instance may be ill-conditioned for the SDP solver. In such a case, the SDP solver may fail to find a solution that meets the precision requirement. We also observed similar phenomena in our recent work [29].

  2. In our experiments, the maximum number of iterations is set to be 30.

References

  1. Anstreicher, K.: Semidefinite programming versus the reformulationlinearization technique for nonconvex quadratically constrained quadratic programming. J. Glob. Optim. 43, 471–484 (2009)

  2. Anstreicher, K., Burer, S.: Computable representations for convex hulls of lowdimensional quadratic forms. Math. Program. Ser. B 124, 33–43 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    Book  MATH  Google Scholar 

  4. Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solutions of uncertain linear programs. Math. Program. 99(2), 351–376 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)

  6. Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25(1), 1–14 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertsimas, D., Brown, D., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53(3), 464–501 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bertsimas, D., Goyal, V.: On the power of robust solutions in two-stage stochastic and adaptive optimization problems. Math. Oper. Res. 35(2), 284–305 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bertsimas, D., Goyal, V.: On the power and limitations of affine policies in two-stage adaptive optimization. Math. Program. 34(2), 491–531 (2012)

    Article  MathSciNet  Google Scholar 

  10. Bertsimas, D., Goyal, V., Sun, X.: A geometric characterization of the power of finite adaptability in multi-stage stochastic and adaptive optimization. Math. Oper. Res. 36(1), 24–54 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Birge, J., Louveaux, F.: Introduction to Stochastic Programming. Springer, Berlin (1997)

    MATH  Google Scholar 

  12. Burer, S., Dong, H.: Representing quadratically constrained quadratic programs as generalized copositive programs. Oper. Res. Lett. 40(3), 203–206 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, X., Zhang, Y.: Uncertain linear programs: extended affinely adjustable robust counterparts. Oper. Res. 57(6), 1469–1482 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Crowther, K., Haimes, Y.: Application of the inoperability input-output model (iim) for systemic risk assessment and management of interdependent infrastructures. Syst. Eng. 8(4), 323–341 (2005)

    Article  Google Scholar 

  15. Eisenberg, L., Noe, T.: Systemic risk in financial systems. Manag. Sci. 47(2), 236–249 (2001)

    Article  MATH  Google Scholar 

  16. Elsinger, H., Lehar, A., Summer, M.: Risk assessment for banking systems. Manag. Sci. 52(9), 1301–1314 (2006)

    Article  Google Scholar 

  17. Elsinger, H., Lehar, A., Summerc, M.: Using market information for banking system risk assessment. Int. J. Central Banking 2(1), 137–165 (2006)

  18. Freund, R., Orlin, J.: On the complexity of four polyhedral set containment problems. Math. Program. 33(2), 139–145 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Goemans, M., Williamson, D.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grant, M., Boyd, S.: Cvx: Matlab Software for Disciplined Convex Programming (2008). http://cvxr.com/cvx/

  21. Henrion, D., Lasserre, J., Loefberg. J.: Gloptipoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24(4–5), 761–779 (2009)

  22. Kambhu, J., Weidman, S., Krishnan, N.: Part 3: systemic risk in ecology and engineering. Econ. Policy Rev. 13(2), 24–40 (2007)

  23. Lasserre, J.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lasserre, J.: Convergent sdp-relaxations in polynomial optimization with sparsity. SIAM J. Optim. 17, 822–843 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mangasarian, O., Shiau, T.: A variable-complexity norm maximization problem. SIAM J. Algebraic Discret. Methods 7(3), 455–461 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nesterov, Y.: Semidefinite relaxation and nonconvex quadratic optimization. Optim. Methods Softw. 9, 140–160 (1998)

    Article  MathSciNet  Google Scholar 

  27. Pardalos, P., Vavasis, S.: Quadratic programming with one negative eigenvalue is np-hard. J. Glob. Optim. 1(1), 15–22 (1991)

  28. Parrilo, P.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96(2), 293–320 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Peng, J., Zhu, T., Luo, H., Toh, K.: Semi-definite relaxation of quadratic assignment problems based on nonredundant matrix splitting. Comput. Optim. Appl. doi:10.1007/s10589-014-9663-y (2012)

  30. Saxena, A., Bonami, P., Lee, J.: Convex relaxation of non-convex mixed integer quadratically constrained programs: extended formulations. Math. Program. Ser. B 124, 383–411 (2010)

  31. Toh, K., Todd, M., Tütüncü, R.: Sdpt3: a matlab software package for semidefinite programming, version 1.3. Optim. Methods Softw. 11(1–4), 545–581 (1999)

    Article  MathSciNet  Google Scholar 

  32. Ye, Y.: Approximating quadratic programming with bound and quadratic constraints. Math. Program. 84(2), 219–226 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank the two anonymous referees and the associate editor for their useful suggestions that help improve the presentation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiming Peng.

Additional information

J. Peng: The research of this author is jointly supported by AFOSR Grant FA9550-09-1-0098, NSF Grants DMS 09-15240 ARRA and CMMI-1131690.

T. Zhu: The research of this author is supported by AFOSR Grant FA9550-09-1-0098.

Appendices

Appendix A: Proof of Proposition 1.1

Using the strong duality of linear program, we have

$$\begin{aligned}&\max \limits _{\left\Vert u \right\Vert _2\le 1} {\min \limits _{Ax\le Qu + b_0}} ~~~c^T x\end{aligned}$$
(25)
$$\begin{aligned}&\quad = \max \limits _{\left\Vert u \right\Vert _2\le 1} {\max \limits _{A^T y = c,~y\le 0}} ~~~u^T Q^T y + b_0^T y\end{aligned}$$
(26)
$$\begin{aligned}&\quad = \max \limits _{\left\Vert u \right\Vert _2\le 1} {\max \limits _{A^T y = c,~y\le 0}} ~~~\left\Vert u \right\Vert _2 \left\Vert Q^T y \right\Vert _2 + b_0^T y\end{aligned}$$
(27)
$$\begin{aligned}&\quad = \max \limits _{A^T y = c,~y\le 0} ~~~\left\Vert Q^T y \right\Vert _2 + b_0^T y. \end{aligned}$$
(28)

With carefully chosen \((Q, b_0, A)\), the above optimization problem includes the following problem as a special case,

$$\begin{aligned}&\max \limits _{x}&\left\Vert x \right\Vert _2\end{aligned}$$
(29)
$$\begin{aligned}&\text {s.t.}&Bx\ge d \end{aligned}$$
(30)

which has been shown to be NP-hard by a reduction to the NP-complete partition problem [18, 25].

Appendix B: Affine-rule approximation

A common tool to approximately solve multilevel optimization including WCLO is using the affine-rule approximation (see e.g., [3, 4, 7, 9, 10, 13]). More specifically, for WCLO, we have

$$\begin{aligned} \max \limits _{\left\Vert u \right\Vert _2\le 1} ~~~{ \min \limits _{{ \begin{array}{c}Ax\le Qu + b_0\end{array}}} } ~~~c^T x = \min \limits _{{ \begin{array}{c} Ax(u)\le Qu + b_0,\\ \forall \left\Vert u \right\Vert _2\le 1\end{array}}} ~~~\max \limits _{\left\Vert u \right\Vert _2\le 1} ~~~c^T x(u) \end{aligned}$$
(31)

since we can always choose

$$\begin{aligned} x(u)=\arg \min \limits _{{ \begin{array}{c}Ax\le Qu + b_0\end{array}}} c^T x. \end{aligned}$$

To make problem (31) tractable, we can artificially restrict the decision function \(x(\cdot )\) to be affine in uncertainties, i.e.,

$$\begin{aligned} x(u) = Pu+q. \end{aligned}$$

Under such a circumstance, problem (31) reduces to

$$\begin{aligned}&\min \limits _{{ \begin{array}{c} A(Pu+q)\le Qu + b_0,\\ \forall \left\Vert u \right\Vert _2\le 1\end{array}}} ~~~\max \limits _{\left\Vert u \right\Vert _2\le 1} ~~~c^T (Pu+q) \nonumber \\&\quad = \begin{array}{ccc} \min \limits _{P,q,t} &{} t &{} \nonumber \\ {\text {s.t.}} &{} A(Pu+q)\le Qu + b_0, &{}\forall \left\Vert u \right\Vert _2\le 1\\ &{} c^T (Pu+q)\le t, &{} \forall \left\Vert u \right\Vert _2\le 1 \end{array}\\&\quad = \begin{array}{cl} \min \limits _{P,q,t} &{} t \\ {\text {s.t}} &{} \left\Vert A_i P - Q_i \right\Vert _2 + A_i q\le b_{0_i},~i = 1,\ldots ,m\\ &{} \left\Vert P^T c \right\Vert _2 + c^T q\le t, \end{array} \end{aligned}$$
(32)

which is a tractable second-order conic optimization problem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Zhu, T. A nonlinear semidefinite optimization relaxation for the worst-case linear optimization under uncertainties. Math. Program. 152, 593–614 (2015). https://doi.org/10.1007/s10107-014-0799-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-014-0799-4

Keywords

Mathematics Subject Classification

Navigation