Skip to main content
Log in

Constraint aggregation for rigorous global optimization

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

In rigorous constrained global optimization, upper bounds on the objective function help to reduce the search space. Obtaining a rigorous upper bound on the objective requires finding a narrow box around an approximately feasible solution, which then must be verified to contain a feasible point. Approximations are easily found by local optimization, but the verification often fails. In this paper we show that even when the verification of an approximate feasible point fails, the information extracted from the results of the local optimization can still be used in many cases to reduce the search space. This is done by a rigorous filtering technique called constraint aggregation. It forms an aggregated redundant constraint, based on approximate Lagrange multipliers or on a vector valued measure of constraint violation. Using the optimality conditions, two-sided linear relaxations, the Gauss–Jordan algorithm and a directed modified Cholesky factorization, the information in the redundant constraint is turned into powerful bounds on the feasible set. Constraint aggregation is especially useful since it also works in a tiny neighborhood of the global optimizer, thereby reducing the cluster effect. A simple introductory example demonstrates how our new method works. Extensive tests show the performance on a large benchmark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. This is true for simple consistency algorithms such as 2B, HC4, Box consistency and the like. However, for this simple example, constraint propagation with 3B-consistency would (as our new technique) directly reduce the domains to the optimal point. This is a coincidence that is unlikely to happen with more complex quadratic constraints.

References

  1. Benhamou, F., McAllister, D., Van Hentenryck, P.: CLP (intervals) revisited. In: Proceedings of International Symposium on Logic Programming, pp. 124–138. MIT Press, Cambridge (1994)

  2. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising hull and box consistency. In: International Conference on Logic Programming, pp. 230–244, (1999). http://citeseer.ist.psu.edu/benhamou99revising.html

  3. Chabert, G., Jaulin, L.: Hull consistency under monotonicity. In: Principle and Practices of Constraint Programming—CP2009, pp. 188–195 (2009)

  4. Collavizza, H., Delobel, F., Rueher, M.: Comparing partial consistencies. Reliab. Comput. 5(3), 213–228 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Domes, F.: GloptLab—a configurable framework for the rigorous global solution of quadratic constraint satisfaction problems. Optim. Methods Softw., 24, 727–747 (2009). http://www.mat.univie.ac.at/~dferi/publ/Gloptlab.pdf

  6. Domes, F., Neumaier, A.: Constraint propagation on quadratic constraints. Constraints 15, 404–429 (2010). http://www.mat.univie.ac.at/~dferi/publ/Propag.pdf

  7. Domes, F., Neumaier, A.: Rigorous filtering using linear relaxations. J. Glob. Optim. 53, 441–473, (2012). http://www.mat.univie.ac.at/~dferi/publ/Linear.pdf

  8. Domes, F., Neumaier, A.: Rigorous verification of feasibility. J. Glob. Optim. pp. 1–24 (2014a). http://www.mat.univie.ac.at/~dferi/publ/Feas_csp.pdf. Online first

  9. Domes, F., Neumaier, A.: JGloptLab—a rigorous global optimization software. in preparation (2014b). http://www.mat.univie.ac.at/~dferi/publ/

  10. Domes, F., Neumaier, A.: Directed modified Cholesky factorization and ellipsoid relaxations. SIAM J. Matrix Anal. Appl. (2014c). http://www.mat.univie.ac.at/~dferi/publ/. Submitted

  11. Domes, F., Fuchs, M., Schichl, H., Neumaier, A.: The optimization test environment. Optim. Eng. 15, 443–468 (2014). http://www.mat.univie.ac.at/~dferi/testenv.html

  12. Garloff, J., Jansson, C., Smith, A.: Lower bound functions for polynomials. J. Comput. Appl. Math. 157, 207–225 (2003). http://citeseer.ist.psu.edu/534450.html

  13. Goldsztejn, A., Domes, F., Chevalier, B.: First order rejection tests for multiple-objective optimization. J. Glob. Optim., pp. 1–20 (2013). http://www.mat.univie.ac.at/~dferi/research/FirstOrder.pdf

  14. Hansen, E.R.: Global Optimization Using Interval Analysis. Marcel Dekker Inc., New York (1992)

    MATH  Google Scholar 

  15. Hongthong, S., Kearfott, R.B.: Rigorous linear overestimators and underestimators. Technical report, University of Louisiana, (2004). http://interval.louisiana.edu/preprints/estimates_of_powers.pdf

  16. Kaisheng, D., Kearfott, R.B.: The cluster problem in multivariate global optimization. J. Glob. Optim. 5(3), 253–265 (1994). http://interval.louisiana.edu/preprints/multcluster.pdf

  17. Kearfott, R.B.: On proving existence of feasible points in equality constrained optimization problems. Math. Program. 83(1–3), 89–100 (1995). http://interval.louisiana.edu/preprints/constrai.pdf

  18. Kearfott, R.B.: On verifying feasibility in equality constrained optimization problems. Technical report, University of Louisiana (1996). http://interval.louisiana.edu/preprints/big_constrai.pdf

  19. Kearfott, R.B.: Improved and simplified validation of feasible points: inequality and equality constrained problems. (2005) http://interval.louisiana.edu/preprints/2005_simplified_feasible_point_verification.pdf

  20. Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., van Hentenryck, P.: Standardized notation in interval analysis. In: Proceedings of XIII Baikal International School-Seminar “Optimization Methods and their Applications”, Volume 4, pp. 106–113, Institute of Energy Systems, Baikal, Irkutsk (2005)

  21. Kolev, L.V.: Automatic computation of a linear interval enclosure. Reliab. Comput. 7(1), 17–28 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lebbah, Y., Michel, C., Rueher, M.: A rigorous global filtering algorithm for quadratic constraints. Constraints 10, 47–65 (2005). http://ylebbah.googlepages.com/research

  23. Lhomme, O.: Consistency techniques for numeric csps. In: IJCAI vol. 1, pp. 232–238 (1993)

  24. McCormick, G.: Computability of global solutions to factorable non-convex programs: part I—convex underestimating problems. Math. Program. 10, 147–175 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  25. Neumaier, A.: Interval Methods for Systems of Equations, volume 37 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  26. Neumaier, A.: An optimality criterion for global quadratic optimization. J. Glob. Optim. 2, 201–208 (1992). http://www.mat.univie.ac.at/~neum/scan/66.pdf

  27. Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. Acta Numer. 1004, 271–369 (2004)

    Article  MathSciNet  Google Scholar 

  28. Sahinidis, N.V.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8, 201–205 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sahinidis, N.V.: BARON 12.1.0: Global Optimization of Mixed-Integer Nonlinear Programs, User’s Manual (2013). http://www.gams.com/dd/docs/solvers/baron.pdf

  30. Schichl, H., Markót, M.C.: Algorithmic differentiation techniques for global optimization in the COCONUT environment. Optim. Methods Softw. 27(2), 359–372 (2012). http://www.mat.univie.ac.at/~herman/papers/griewank.pdf

  31. Schichl, H., Neumaier, A.: Exclusion regions for systems of equations. SIAM J. Numer. Anal. 42(1), 383–408 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Schichl, H., Neumaier, A.: Transposition theorems and qualification-free optimality conditions. SIAM J. Optim. 17, 1035–1055 (2006). http://www.mat.univie.ac.at/~neum/ms/trans.pdf

  33. Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.-H., Nguyen, T.-V.: Benchmarking global optimization and constraint satisfaction codes. In: Bliek, Ch., Jermann, Ch., Neumaier, A. (eds.) Global Optimization and Constraint Satisfaction, pp. 211–222. Springer, Berlin (2003). http://www.mat.univie.ac.at/~neum/ms/bench.pdf

  34. Sherali, H., Adams, W.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer, Dordrecht (1999)

    Book  MATH  Google Scholar 

  35. Vu, X.-H., Schichl, H., Sam-Haroud, D.: Using directed acyclic graphs to coordinate propagation and search for numerical constraint satisfaction problems. In: Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004), pp. 72–81 (2004). http://www.mat.univie.ac.at/~herman/papers/ICTAI2004.pdf

Download references

Acknowledgments

This research was supported by the Austrian Science Fund (FWF) under the contract numbers P23554-N13 and P22239-N13. Numerous suggestions by the referees, which markedly improved the presentation of the paper, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Domes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domes, F., Neumaier, A. Constraint aggregation for rigorous global optimization. Math. Program. 155, 375–401 (2016). https://doi.org/10.1007/s10107-014-0851-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-014-0851-4

Keywords

Mathematics Subject Classification

Navigation