Skip to main content
Log in

Critical solutions of nonlinear equations: stability issues

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

It is known that when the set of Lagrange multipliers associated with a stationary point of a constrained optimization problem is not a singleton, this set may contain so-called critical multipliers. This special subset of Lagrange multipliers defines, to a great extent, stability pattern of the solution in question subject to parametric perturbations. Criticality of a Lagrange multiplier can be equivalently characterized by the absence of the local Lipschitzian error bound in terms of the natural residual of the optimality system. In this work, taking the view of criticality as that associated to the error bound, we extend the concept to general nonlinear equations (not necessarily with primal–dual optimality structure). Among other things, we show that while singular noncritical solutions of nonlinear equations can be expected to be stable only subject to some poor “asymptotically thin” classes of perturbations, critical solutions can be stable under rich classes of perturbations. This fact is quite remarkable, considering that in the case of nonisolated solutions, critical solutions usually form a thin subset within all the solutions. We also note that the results for general equations lead to some new insights into the properties of critical Lagrange multipliers (i.e., solutions of equations with primal–dual structure).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alt, W.: Lipschitzian perturbations of infinite optinization problems. In: Fiacco, A.V. (ed.) Mathematical Programming with Data Perturbations, pp. 7–21. M. Dekker, New York (1983)

    Google Scholar 

  2. Arutyunov, A.V.: Optimality Conditions: Abnormal and Degenerate Problems. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  3. Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, Hoboken (1984)

    MATH  Google Scholar 

  4. Avakov, E.R.: Extremum conditions for smooth problems with equality-type constraints. USSR Comput. Math. Math. Phys. 25, 24–32 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Avakov, E.R.: Theorems on estimates in the neighborhood of a singular point of a mapping. Math. Notes 47, 425432 (1990)

    Article  MathSciNet  Google Scholar 

  6. Behling, R., Iusem, A.: The effect of calmness on the solution set of systems of nonlinear equations. Math. Program. 137, 155–165 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  MATH  Google Scholar 

  8. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  9. DEGEN. http://w3.impa.br/~optim/DEGEN_collection.zip

  10. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings, 2nd edn. Springer, New York (2014)

    MATH  Google Scholar 

  11. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. Ann. Oper. Res. 175, 177–211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fernández, D., Izmailov, A.F., Solodov, M.V.: Sharp primal superlinear convergence results for some Newtonian methods for constrained optimization. SIAM J. Optim. 20, 3312–3334 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gfrerer, H., Klatte, D.: Lipschitz and Hölder stability of optimization problems and generalized equations. Math. Program. (2015). doi:10.1007/s10107-015-0914-1

    MATH  Google Scholar 

  14. Gfrerer, H., Mordukhovich, B.S.: Complete characterizations of tilt stability in nonlinear programming under weakest qualification conditions. SIAM J. Optim. 25, 2081–2119 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gfrerer, H., Outrata, J.V.: On computation of limiting coderivatives of the normal-cone mapping to inequality systems and their applications. Optimization (2016). doi:10.1080/02331934.2015.1066372

    MathSciNet  MATH  Google Scholar 

  16. Hager, W.W., Gowda, M.S.: Stability in the presence of degeneracy and error estimation. Math. Program. 85, 181–192 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Halkin, H.: Implicit functions and optimization problems without continuous differentiability of the data. SIAM J. Control 12, 229–236 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  18. Izmailov, A.F.: On some generalizations of Morse lemma. Proc. Steklov Inst. Math. 220, 138–153 (1998)

    MathSciNet  Google Scholar 

  19. Izmailov, A.F.: On the analytical and numerical stability of critical Lagrange multipliers. Comput. Math. Math. Phys. 45, 930–946 (2005)

    MathSciNet  Google Scholar 

  20. Izmailov, A.F., Kurennoy, A.S., Solodov, M.V.: A note on upper Lipschitz stability, error bounds, and critical multipliers for Lipschitz-continuous KKT systems. Math. Program. 142, 591–604 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Izmailov, A.F., Solodov, M.V.: Error bounds for 2-regular mappings with Lipschitzian derivatives and their applications. Math. Program. 89, 413–435 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Izmailov, A.F., Solodov, M.V.: The theory of 2-regularity for mappings with Lipschitzian derivatives and its applications to optimality conditions. Math. Oper. Res. 27, 614–635 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Izmailov, A.F., Solodov, M.V.: On attraction of Newton-type iterates to multipliers violating second-order sufficiency conditions. Math. Program. 117, 271–304 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Izmailov, A.F., Solodov, M.V.: Examples of dual behaviour of Newton-type methods on optimization problems with degenerate constraints. Comput. Optim. Appl. 42, 231–264 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Izmailov, A.F., Solodov, M.V.: On attraction of linearly constrained Lagrangian methods and of stabilized and quasi-Newton SQP methods to critical multipliers. Math. Program. 126, 231–257 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Izmailov, A.F., Solodov, M.V.: Newton-Type Methods for Optimization and Variational Problems. Springer series in operations research and financial engineering. Springer, Switzerland (2014)

    Book  MATH  Google Scholar 

  27. Izmailov, A.F., Solodov, M.V.: Critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it. TOP 23, 1–26 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Izmailov, A.F., Solodov, M.V.: Rejoinder on: critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it. TOP 23, 48–52 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Izmailov, A.F., Uskov, E.I.: Attraction of Newton method to critical Lagrange multipliers: fully quadratic case. Math. Program. 152, 33–73 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Klatte, D.: A Note on Quantitative Stability Results in Nonlinear Optimization. Seminarbericht Nr. 90. Sektion Mathematik, pp. 77–86. Humboldt-Universität zu Berlin, Berlin (1987)

    Google Scholar 

  31. Klatte, D.: On quantitative stability for non-isolated minima. Control Cybern. 23, 183–200 (1994)

    MathSciNet  MATH  Google Scholar 

  32. Kummer, B.: Inclusions in general spaces: Hoelder stability, solution schemes and Ekelands principle. J. Math. Anal. Appl. 358, 327–344 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  34. Shapiro, A.: Perturbation analysis of optimization problems in Banach spaces. Numer. Func. Anal. Optim. 13, 97–116 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the two anonymous referees for their comments, which improved the original presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Solodov.

Additional information

Dedicated to Professor R. Tyrrell Rockafellar.

This research is supported in part by the Russian Foundation for Basic Research Grant 14-01-00113, by the Russian Science Foundation Grant 15-11-10021, by the Grant of the Russian Federation President for the state support of leading scientific schools NSh-8215.2016.1, by Volkswagen Foundation, by CNPq Grants PVE 401119/2014-9 and 303724/2015-3, and by FAPERJ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izmailov, A.F., Kurennoy, A.S. & Solodov, M.V. Critical solutions of nonlinear equations: stability issues. Math. Program. 168, 475–507 (2018). https://doi.org/10.1007/s10107-016-1047-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-016-1047-x

Keywords

Mathematics Subject Classification

Navigation