Skip to main content
Log in

A note on alternating projections for ill-posed semidefinite feasibility problems

  • Short Communication
  • Published:
Mathematical Programming Submit manuscript

Abstract

We observe that Sturm’s error bounds readily imply that for semidefinite feasibility problems, the method of alternating projections converges at a rate of \(\mathcal {O}\Big (k^{-\frac{1}{2^{d+1}-2}}\Big )\), where d is the singularity degree of the problem—the minimal number of facial reduction iterations needed to induce Slater’s condition. Consequently, for almost all such problems (in the sense of Lebesgue measure), alternating projections converge at a worst-case rate of \(\mathcal {O}\Big (\frac{1}{\sqrt{k}}\Big )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Valued Anal. 1(2), 185–212 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauschke, H.H., Borwein, J.M.: Dykstra’s alternating projection algorithm for two sets. J. Approx. Theory 79(3), 418–443 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berman, A.: Cones, Matrices and Mathematical Programming. Lecture Notes in Economics and Mathematical Systems, vol. 79. Springer, Berlin (1973)

  5. Bolte, J., Daniilidis, A., Lewis, A.S.: Generic optimality conditions for semialgebraic convex programs. Math. Oper. Res. 36(1), 55–70 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borwein, J., Li, G., Yao, L.: Analysis of the convergence rate for the cyclic projection algorithm applied to basic semialgebraic convex sets. SIAM J. Optim. 24(1), 498–527 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Borwein, J.M.: Proximality and chebyshev sets. Optim. Lett. 1(1), 21–32 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borwein, J.M., Moors, W.B.: Stability of closedness of convex cones under linear mappings. J. Convex Anal. 16(3–4), 699–705 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Borwein, J.M., Moors, W.B.: Stability of closedness of convex cones under linear mappings II. J. Nonlinear Anal. Optim. 1(1), 1–7 (2010)

    MathSciNet  Google Scholar 

  10. Borwein, J.M., Wolkowicz, H.: Facial reduction for a cone-convex programming problem. J. Austral. Math. Soc. Ser. A 30(3):369–380 (1980/81)

  11. Bregman, L.M.: The method of successive projection for finding a common point of convex sets. Sov. Math. Dokl 6, 688–692 (1965)

    MATH  Google Scholar 

  12. Cheung, Y.-L., Schurr, S., Wolkowicz, H.: Preprocessing and regularization for degenerate semidefinite programs. In: Computational and Analytical Mathematics, vol. 50 of Springer Proc. Math. Stat., pp. 251–303. Springer, New York (2013)

  13. Cheung, Y.L.: Preprocessing and Reduction for Semidefinite Programming via Facial Reduction: Theory and Practice. Ph.D. Thesis, University of Waterloo (2013)

  14. Coste, M.: An Introduction to Semialgebraic Geometry. RAAG notes, 78 pages, Institut de Recherche Mathématiques de Rennes (2002)

  15. Drusvyatskiy, D., Ioffe, A.D., Lewis, A.S.: Generic minimizing behavior in semialgebraic optimization. SIAM J. Optim. 26(1), 513–534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Drusvyatskiy, D., Lewis, A.S.: Generic nondegeneracy in convex optimization. Proc. Am. Math. Soc. 139(7), 2519–2527 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Drusvyatskiy, D., Vavasis, S.A., Wolkowicz, H.: Extreme point inequalities and geometry of the rank sparsity ball. arXiv:1401.4774 (2014)

  18. Gubin, L.G., Polyak, B.T., Raik, E.V.: The method of projections for finding the common point of convex sets. USSR Comput. Math. Math. Phys. 7(6), 1–24 (1967)

    Article  Google Scholar 

  19. Holmes, R.B.: Geometric Functional Analysis and its Applications. Graduate Texts in Mathematics, No. 24. Springer, New York (1975)

  20. Pataki, G.: Strong duality in conic linear programming: facial reduction and extended duals. In: Computational and Analytical Mathematics, vol. 50 of Springer Proc. Math. Stat., pp. 613–634. Springer, New York (2013)

  21. Pataki, G., Tunçel, L.: On the generic properties of convex optimization problems in conic form. Math. Progr. 89(3, Ser. A), 449–457 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton (1970)

  23. Sturm, J.F.: Error bounds for linear matrix inequalities. SIAM J. Optim. 10(4), 1228–1248 (2000). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tunçel, L.: Polyhedral and semidefinite programming methods in combinatorial optimization, vol. 27 of Fields Institute Monographs. American Mathematical Society, Providence, RI; Fields Institute for Research in Mathematical Sciences, Toronto (2010)

  25. von Neumann, J.: Functional Operators. II. The Geometry of Orthogonal Spaces. Annals of Mathematics Studies, no. 22. Princeton University Press, Princeton (1950)

  26. Waki, H., Muramatsu, M.: Facial reduction algorithms for conic optimization problems. J. Optim. Theory Appl. 158(1), 188–215 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Levent Tunçel for insightful discussions, and the two anonymous referees for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy Drusvyatskiy.

Additional information

Research of G. Li was supported by an ARC Future Fellowship. Research of H. Wolkowicz was supported by The Natural Sciences and Engineering Research Council of Canada and AFOSR.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drusvyatskiy, D., Li, G. & Wolkowicz, H. A note on alternating projections for ill-posed semidefinite feasibility problems. Math. Program. 162, 537–548 (2017). https://doi.org/10.1007/s10107-016-1048-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-016-1048-9

Keywords

Mathematics Subject Classification

Navigation