Skip to main content
Log in

Piecewise static policies for two-stage adjustable robust linear optimization

  • Short Communication
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper, we consider two-stage adjustable robust linear optimization problems under uncertain constraints and study the performance of piecewise static policies. These are a generalization of static policies where we divide the uncertainty set into several pieces and specify a static solution for each piece. We show that in the worst-case, there is no piecewise static policy with a polynomial number of pieces that has a significantly better performance than an optimal static policy. This is quite surprising as piecewise static policies are significantly more general than static policies. The proof is based on a combinatorial argument and the structure of piecewise static policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Awasthi, P., Goyal, V., Lu, B.Y.: On the adaptivity gap in two-stage robust linear optimization under uncertain constraints. Math. Program. (2015)

  2. Beale, E.M.: On minimizing a convex function subject to linear inequalities. J. R. Stat. Soc. Ser. B (Methodol.) 17(2), 173–184 (1955)

  3. Ben-Tal, A., EL Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press (2009)

  4. Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solutions of uncertain linear programs. Math. Program. 99(2), 351–376 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25(1), 1–13 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53(3), 464–501 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bertsimas, D., Caramanis, C.: Finite adaptability in multistage linear optimization. IEEE Trans. Autom. Control 55(12), 2751–2766 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bertsimas, D., Goyal, V.: On the power and limitations of affine policies in two-stage adaptive optimization. Math. Program. 134(2), 491–531 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bertsimas, D., Goyal, V., Lu, B.Y.: A tight characterization of the performance of static solutions in two-stage adjustable robust linear optimization. Math. Program. 150(2), 281–319 (2015)

  11. Bertsimas, D., Goyal, V., Sun, X.A.: A geometric characterization of the power of finite adaptability in multistage stochastic and adaptive optimization. Math. Oper. Res. 36(1), 24–54 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bertsimas, D., Iancu, D.A., Parrilo, P.A.: Optimality of affine policies in multistage robust optimization. Math. Oper. Res. 35(2), 363–394 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math. Program. 98(1), 49–71 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Charnes, A., Cooper, W.W., Symonds, G.H.: Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil. Manag. Sci. 4(3), 235–263 (1958)

    Article  Google Scholar 

  16. Dantzig, G.B.: Linear programming under uncertainty. Manag. Sci. 1(3–4), 197–206 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dean, B.C., Goemans, M.X., Vondrák, J.: Adaptivity and approximation for stochastic packing problems. In: Proceedings of the sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 395–404. Society for Industrial and Applied Mathematics (2005)

  18. Dyer, M., Stougie, L.: Computational complexity of stochastic programming problems. Math. Program. 106(3), 423–432 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. El Ghaoui, L., Lebret, H.: Robust solutions to least-squares problems with uncertain data. SIAM J. Matrix Anal. Appl. 18(4), 1035–1064 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Garstka, S.J., Wets, R.J.-B.: On decision rules in stochastic programming. Math. Program. 7(1), 117–143 (1974)

  21. Goel, A., Indyk, P.: Stochastic load balancing and related problems. In: 40th Annual Symposium on Foundations of Computer Science, pp. 579–586. IEEE (1999)

  22. Goldfarb, D., Iyengar, G.: Robust portfolio selection problems. Math. Oper. Res. 28(1), 1–38 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Goyal, V., Ravi, R.: A ptas for the chance-constrained knapsack problem with random item sizes. Oper. Res. Lett. 38(3), 161–164 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hanasusanto, G.A., Kuhn, D., Wiesemann, W.: K-adaptability in two-stage robust binary programming. Oper. Res. 63(4), 877–891 (2015)

  25. Hanasusanto, G.A., Kuhn, D., Wiesemann, W.: A comment on computational complexity of stochastic programming problems. Math. Program. 159(1–2), 557–569 (2016)

  26. Iancu, D.A., Sharma, M., Sviridenko, M.: Supermodularity and affine policies in dynamic robust optimization. Oper. Res. 61(4), 941–956 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kuhn, D., Wiesemann, W., Georghiou, A.: Primal and dual linear decision rules in stochastic and robust optimization. Math. Program. 130(1), 177–209 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Prékopa, A.: Stochastic Programming, vol. 324. Mathematics and Its Applications. Springer, Netherlands (1995)

  29. Shapiro, A.: Stochastic programming approach to optimization under uncertainty. Math. Program. 112(1), 183–220 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shapiro, A., Dentcheva, D. et al.: Lectures on stochastic programming: modeling and theory, vol. 16. SIAM, Philadelphia (2014)

  31. Shapiro, A., Nemirovski, A.: On complexity of stochastic programming problems. In: Jeyakumar, V., Rubinov, A. (eds.) Continuous Optimization, pp. 111–146. Springer, US (2005)

  32. Skaf, J., Boyd, S.P.: Design of affine controllers via convex optimization. IEEE Trans. Autom. Control 55(11), 2476–2487 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wiesemann, W., Kuhn, D., Rustem, B.: Robust resource allocations in temporal networks. Math. Program. 135(1–2), 437–471 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

O. El Housni and V. Goyal are supported by NSF Grants CMMI 1201116 and CMMI 1351838.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineet Goyal.

Appendix: Proof of Lemma 5

Appendix: Proof of Lemma 5

First, note that for \(h >0\),

$$\begin{aligned} T(\mathcal{U},\varvec{h})=\left\{ \left( \frac{v_1}{h_1},\frac{v_2}{h_2},\ldots ,\frac{v_m}{h_m}\right) \; \Bigg \vert \; (v_1,v_2,\ldots ,v_m) \in T(\mathcal{U},\varvec{e}) \right\} . \end{aligned}$$

Then we can easily prove that \(\kappa (T(\mathcal{U},\varvec{h})) = \kappa (T(\mathcal{U},\varvec{e})). \) In fact, let \( \varvec{v} \in \mathsf{conv}(T(\mathcal{U},\varvec{h}))\). Then,

\(\sum _{i=1}^m v_ih_i \varvec{e}_i \in \mathsf{conv} (T(\mathcal{U},\varvec{e}))\). Therefore,

$$\begin{aligned} \frac{1}{\kappa (T(\mathcal{U},\varvec{e}))}\cdot \left( \sum _{i=1}^m v_i h_i \varvec{e}_i \right) \in T(\mathcal{U},\varvec{e}). \end{aligned}$$

Then,

$$\begin{aligned} \frac{1}{\kappa T((\mathcal{U},\varvec{e}))} \cdot \varvec{v} \in T(\mathcal{U},\varvec{h}), \end{aligned}$$

which implies,

$$\begin{aligned} \mathsf{conv} (T(\mathcal{U},\varvec{h}) )\subseteq \kappa (T(\mathcal{U},\varvec{e}))\cdot T(\mathcal{U},\varvec{h}), \end{aligned}$$

and finally \( \kappa (T(\mathcal{U},\varvec{h})) \le \kappa ( T(\mathcal{U},\varvec{e})) \). Similarly, we also have \( \kappa (T(\mathcal{U},\varvec{h})) \ge \kappa (T(\mathcal{U},\varvec{e})) .\) Now, it’s sufficient to show that \( \kappa (T(\mathcal{U},\varvec{e})) = \sum _{i=1}^m \tau _i . \) Let first show that

$$\begin{aligned} \mathsf{conv} (T(\mathcal{U},\varvec{e})) = \left\{ (v_1,v_2,\ldots ,v_m) \in [0,1]^m \; \Bigg \vert \; \sum _{i=1}^m \frac{v_i}{\tau _i}\le 1 \right\} . \end{aligned}$$
(5.1)

Let \(\varvec{v} \in \mathsf{conv}(T(\mathcal{U},\varvec{e}))\). From Lemma 1, we have \( \varvec{v} = \sum _{i=1}^m \lambda _i a_i \varvec{e}_i ,\) where \( \sum _{i=1}^m \lambda _i =1\), \( {\lambda }_i \in [0,1] \) and \( 0 \le a_i \le {\tau }_i, \quad \forall i \in [m]\). We have,

$$\begin{aligned} \sum _{i=1}^m \frac{v_i}{{\tau }_i} = \sum _{i=1}^m {\lambda }_i \cdot \frac{a_i}{{\tau }_i} \le \sum _{i=1}^m {\lambda }_i = 1. \end{aligned}$$

Conversely, let \(\varvec{v} \in {\mathbb {R}}^m_+ \) such that,

$$\begin{aligned} \sum _{i=1}^m \frac{v_i}{\tau _i}\le 1. \end{aligned}$$

We have

$$\begin{aligned} \varvec{v}= \sum _{j=1}^m \lambda _j a_j \varvec{e}_j, \end{aligned}$$

where for all \(j \in [m]\),

$$\begin{aligned} \lambda _j = \frac{\frac{v_j}{\tau _j}}{\sum _{i=1}^m \frac{v_i}{\tau _i}} \qquad \text {and} \qquad a_{j}=\tau _j \sum _{i=1}^m \frac{v_i}{\tau _i}. \end{aligned}$$

We have \(\sum _{j=1}^m \lambda _j =1\) and \( a_j \le {\tau }_j \; \forall j \in [m]\). Then, \( \varvec{v} \in \mathsf{conv}(T(\mathcal{U},\varvec{e}))\).

Now, we would like to find a lower bound for \( \kappa (T(\mathcal{U},\varvec{e}))\). Let \( \alpha \ge 1 \) such that \( \mathsf{conv}(T(\mathcal{U},\varvec{e})) \subseteq \alpha \cdot T(\mathcal{U},\varvec{e}).\) From (5.1), we have

$$\begin{aligned} \left( \frac{\tau _1^2}{\sum _{i=1}^m \tau _i}, \frac{\tau _2^2}{\sum _{i=1}^m \tau _i},\ldots ,\frac{\tau _m^2}{\sum _{i=1}^m \tau _i} \right) \in \mathsf{conv}(T(\mathcal{U},\varvec{e})) \end{aligned}$$

Then, there exists \(\mathsf{diag}(\varvec{v} )\in \mathcal{U} \) and \(\varvec{\mu } \in {\mathbb {R}}_+^m\), \( \sum _{i=1}^m \mu _i =1 \), such that

$$\begin{aligned} \left( \frac{\tau _1^2}{\sum _{i=1}^m \tau _i}, \frac{\tau _2^2}{\sum _{i=1}^m \tau _i},\ldots ,\frac{\tau _m^2}{\sum _{i=1}^m \tau _i} \right) = \alpha \cdot \mathsf{diag}(\varvec{v})^T \varvec{\mu } , \end{aligned}$$

i.e. \( \forall 1 \le i \le m\),

$$\begin{aligned} \frac{\tau _i^2}{\sum _{j=1}^m \tau _j} = \alpha \mu _i v_i \end{aligned}$$

From Cauchy–Shwartz inequality we have,

$$\begin{aligned} \sum _{i=1}^m \frac{ \tau _i^2 }{\mu _i} \ge \left( \sum _{i=1}^m \tau _i \right) ^2, \end{aligned}$$

Then,

$$\begin{aligned} \alpha \left( \sum _{i=1}^m \tau _i\right) \left( \sum _{i=1}^m v_i\right) \ge \left( \sum _{i=1}^m \tau _i \right) ^2, \end{aligned}$$

i.e.

$$\begin{aligned} \alpha \left( \sum _{i=1}^m v_i\right) \ge \left( \sum _{i=1}^m \tau _i \right) , \end{aligned}$$

therefore,

$$\begin{aligned} \alpha \ge \sum _{i=1}^m \tau _i, \end{aligned}$$

where the last inequality follows from \(\sum _{i=1}^m v_i \le 1.\) To finish our proof we show that,

$$\begin{aligned} \mathsf{conv}(T({ \mathcal U } ,\varvec{e})) \subseteq \left( \sum _{i=1}^m \tau _i\right) \cdot T({ \mathcal U } ,\varvec{e}). \end{aligned}$$

Let \( \varvec{v} \in \mathsf{conv}(T({ \mathcal U } ,\varvec{e})) \), we have from (5.1),

$$\begin{aligned} \sum _{i=1}^m \frac{v_i}{\tau _i} \le 1 . \end{aligned}$$

For all \( 1 \le j \le m \), let define,

$$\begin{aligned} \mu _j = \frac{\frac{v_j}{\tau _j}}{\sum _{i=1}^m \frac{v_i}{\tau _i}} \qquad \text {and} \qquad b_j= \tau _j \frac{\sum _{i=1}^m \frac{v_i}{\tau _i}}{\sum _{i=1}^m \tau _i}. \end{aligned}$$

Then

$$\begin{aligned} \varvec{v} = \left( \sum _{i=1}^m \tau _i\right) \cdot \mathsf{diag}(\varvec{b})^T \varvec{\mu } \end{aligned}$$

We have \(\forall j \in [m]\),

$$\begin{aligned} b_j \le \frac{\tau _j}{\sum _{i=1}^m \tau _i} \le \tau _j \end{aligned}$$

where the second inequality holds because \(\sum _{i=1}^m \tau _i \ge 1\). Furthermore,

$$\begin{aligned} \sum _{j=1}^m b_j = \sum _{i=1}^m \frac{v_i}{\tau _i} \le 1. \end{aligned}$$

Therefore, \( \mathsf{diag}(\varvec{b}) \in \mathcal{U} \). Since \( \sum _{j=1}^n \mu _j =1\), \(\mathsf{diag}(\varvec{b})^T \varvec{\mu }\in T({ \mathcal U } ,\varvec{e}).\) We conclude that

$$\begin{aligned} \varvec{v} \in \left( \sum _{i=1}^m \tau _i\right) \cdot T({ \mathcal U } ,\varvec{e}). \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Housni, O., Goyal, V. Piecewise static policies for two-stage adjustable robust linear optimization. Math. Program. 169, 649–665 (2018). https://doi.org/10.1007/s10107-017-1142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-017-1142-7

Keywords

Mathematics Subject Classification

Navigation