Skip to main content
Log in

Relative-error approximate versions of Douglas–Rachford splitting and special cases of the ADMM

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We derive a new approximate version of the alternating direction method of multipliers (ADMM) which uses a relative error criterion. The new version is somewhat restrictive and allows only one of the two subproblems to be minimized approximately, but nevertheless covers commonly encountered special cases. The derivation exploits the long-established relationship between the ADMM and both the proximal point algorithm (PPA) and Douglas–Rachford (DR) splitting for maximal monotone operators, along with a relative-error of the PPA due to Solodov and Svaiter. In the course of analysis, we also derive a version of DR splitting in which one operator may be evaluated approximately using a relative error criterion. We computationally evaluate our method on several classes of test problems and find that it significantly outperforms several alternatives on one problem class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertsekas, D.P.: Convex analysis and optimization. Athena Scientific, Belmont, MA, USA (2003). With Angelia Nedić and Asuman E. Ozdaglar

  4. Boley, D.: Local linear convergence of the alternating direction method of multipliers on quadratic or linear programs. SIAM J. Optim. 23(4), 2183–2207 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  6. Dettling, M., Bühlmann, P.: Finding predictive gene groups from microarray data. J. Multivariate Anal. 90(1), 106–131 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Duarte, M.F., Davenport, M.A., Takbar, D., Laska, J.N., Sun, T., Kelly, K.F., Baraniuk, R.G.: Single-pixel imaging via compressive sampling: Building simpler, smaller, and less-expensive digital cameras. IEEE Sig. Proc. Mag. 25(2), 83–91 (2008)

    Article  Google Scholar 

  8. Eckstein, J.: Splitting methods for monotone operators with applications to parallel optimization. Ph.D. thesis, Massachusetts Institute of Technology (1989)

  9. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(3), 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eckstein, J., Fukushima, M.: Some reformulations and applications of the alternating direction method of multipliers. In: Hager, W.W., Hearn, D.W., Pardalos, P.M. (eds.) Large Scale Optimization: State of the Art, pp. 119–138. Kluwer, Dordrecht (1994)

  11. Eckstein, J., Silva, P.J.S.: A practical relative error criterion for augmented Lagrangians. Math. Program. 141(1–2), 319–348 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eckstein, J., Yao, W.: Approximate versions of the alternating direction method of multipliers. Tech. Rep. 2016-01-5276, Optimization Online (2016)

  13. Eckstein, J., Yao, W.: Approximate ADMM algorithms derived from Lagrangian splitting. Comput. Optim. Applic. (2017). Available online

  14. Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using second order information for training support vector machines. J. Mach. Learn. Res. 6, 1889–1918 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Fleming, P.J., Wallace, J.J.: How not to lie with statistics: The correct way to summarize benchmark results. Commun. ACM 29(3), 218–221 (1986)

    Article  Google Scholar 

  16. Fortin, M., Glowinski, R.: On decomposition-coordination methods using an augmented Lagrangian. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Numerical solution of Boundary-Value Problems, Studies in Mathematics and its Applications, vol. 15, pp. 97–146. North-Holland, Amsterdam (1983)

    Google Scholar 

  17. Franklin, J.: The elements of statistical learning: data mining, inference and prediction. Math. Intelligencer 27(2), 83–85 (2005)

    Article  Google Scholar 

  18. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, Studies in Mathematics and its Applications, vol. 15, pp. 299–331. North-Holland, Amsterdam (1983)

    Google Scholar 

  19. Guyon, I., Gunn, S., Ben-Hur, A., Dror, G.: Result analysis of the NIPS 2003 feature selection challenge. In: Saul, L., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 17, pp. 545–552. MIT Press, Cambridge, MA (2005)

    Google Scholar 

  20. Kogan, S., Levin, D., Routledge, B.R., Sagi, J.S., Smith, N.A.: Predicting risk from financial reports with regression. Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics. NAACL ’09, pp. 272–280. Association for Computational Linguistics, Stroudsburg, PA (2009)

  21. Lawrence, J., Spingarn, J.E.: On fixed points of nonexpansive piecewise isometric mappings. Proc. London Math. Soc. 55(3), 605–624 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liang, J., Fadili, J., Peyré, G.: Convergence rates with inexact non-expansive operators. Math. Program. 159(1–2), 403–434 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  24. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45(3), 503–528 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ng, A.Y.: Feature selection, \(L_1\) vs. \(L_2\) regularization, and rotational invariance. In: Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004, pp. 615–622 (2004)

  27. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  28. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72(2), 383–390 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  30. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  31. Solodov, M.V., Svaiter, B.F.: A hybrid projection-proximal point algorithm. J. Convex Anal. 6(1), 59–70 (1999)

    MathSciNet  MATH  Google Scholar 

  32. Solodov, M.V., Svaiter, B.F.: An inexact hybrid generalized proximal point algorithm and some new results on the theory of Bregman functions. Math. Oper. Res. 25(2), 214–230 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  34. Tseng, P.: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Control Optim. 29(1), 119–138 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yan, M., Yin, W.: Self equivalence of the alternating direction method of multipliers. In: Glowinski, R., Osher, S.J., Yin, W. (eds.) Splitting Methods in Communication, Imaging, Science, and Engineering. Springer, Cham, Switzerland (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Eckstein.

Additional information

This work was funded in part by the National Science Foundation under Grants CCF-1115638 and CCF-1617617. The authors would also like to thank the anonymous referees for suggesting numerous corrections and enhancements to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eckstein, J., Yao, W. Relative-error approximate versions of Douglas–Rachford splitting and special cases of the ADMM. Math. Program. 170, 417–444 (2018). https://doi.org/10.1007/s10107-017-1160-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-017-1160-5

Keywords

Mathematics Subject Classification

Navigation