Skip to main content
Log in

On minimizing difference of a SOS-convex polynomial and a support function over a SOS-concave matrix polynomial constraint

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper, we establish tractable sum of squares characterizations of the containment of a convex set, defined by a SOS-concave matrix inequality, in a non-convex set, defined by difference of a SOS-convex polynomial and a support function, with Slater’s condition. Using our set containment characterization, we derive a zero duality gap result for a DC optimization problem with a SOS-convex polynomial and a support function, its sum of squares polynomial relaxation dual problem, the semidefinite representation of this dual problem, and the dual problem of the semidefinite programs. Also, we present the relations of their solutions. Finally, through a simple numerical example, we illustrate our results. Particularly, in this example we find the optimal solution of the original problem by calculating the optimal solution of its associated semidefinite problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahmadi, A.A., Parrilo, P.A.: A convex polynomial that is not SOS-convex. Math. Program. 135(1–2), 275–292 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahmadi, A.A., Parrilo, P.A.: A complete characterization of the gap between convexity and SOS-convexity. SIAM J. Optim. 23(2), 811–833 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belousov, E.G., Klatte, D.: A Frank–Wolfe type theorem for convex polynomial programs. Comput. Optim. Appl. 22(1), 37–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boţ, R.I., Wanka, G.: Duality for multiobjective optimization problems with convex objective functions and DC constraints. J. Math. Anal. Appl. 315(2), 526–543 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boţ, R.I., Hodrea, I.B., Wanka, G.: Some new Farkas-type results for inequality systems with DC functions. J. Glob. Optim. 39(4), 595–608 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Currie, J.: A free Matlab toolbox for optimization, OPTI toolbox, version 2.15. (2013). http://www.i2c2.aut.ac.nz/Wiki/OPTI/index.php/Main/HomePage

  7. Dinh, N., Jeyakumar, V., Lee, G.M.: Sequential Lagrangian conditions for convex programs with applications to semidefinite programming. J. Optim. Theory Appl. 125(1), 85–112 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dinh, N., Mordukhovich, B., Nghia, T.T.A.: Subdifferentials of value functions and optimality conditions for DC and bilevel infinite and semi-infinite programs. Math. Program. 123(1), 101–138 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fang, D.H., Li, C., Yang, X.Q.: Stable and total Fenchel duality for DC optimization problems in locally convex spaces. SIAM J. Optim. 21(3), 730–760 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fujiwara, Y., Kuroiwa, D.: Lagrange duality in canonical DC programming. J. Math. Anal. Appl. 408(2), 476–483 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goberna, M.A., Jeyakumar, V., Dinh, N.: Dual characterizations of set containments with strict convex inequalities. J. Glob. Optim. 34(1), 33–54 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Harada, R., Kuroiwa, D.: Lagrange-type duality in DC programming. J. Math. Anal. Appl. 418(1), 415–424 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Härter, V., Jansson, C., Lange, M.: VSDP: a matlab toolbox for verified semidefinite-quadratic-linear programming. Technical report, Institute for Reliable Computing, Hamburg University of Technology (2012)

  14. Helton, J.W., Nie, J.W.: Semidefinite representation of convex sets. Math. Program. 122(1), 21–64 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jeyakumar, V.: Characterizing set containments involving infinite convex constraints and reverse-convex constraints. SIAM J. Optim. 13(4), 947–959 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jeyakumar, V., Li, G.: Characterizing robust set containments and solutions of uncertain linear programs without qualifications. Oper. Res. Lett. 38(3), 188–194 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jeyakumar, V., Li, G.: Exact SDP relaxations for classes of nonlinear semidefinite programming problems. Oper. Res. Lett. 40(6), 529–536 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jeyakumar, V., Li, G.: Trust-region problems with linear inequality constraints: exact SDP relaxation, global optimality and robust optimization. Math. Program. 147(1–2), 171–206 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jeyakumar, V., Li, G.: A new class of alternative theorems for SOS-convex inequalities and robust optimization. Appl. Anal. 94(1), 56–74 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jeyakumar, V., Vicente-Pérez, J.: Dual semidefinite programs without duality gaps for a class of convex minimax program1s. J. Optim. Theory Appl. 162(3), 735–753 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jeyakumar, V., Lee, G.M., Dinh, N.: New sequential Lagrange multiplier conditions characterizing optimality without constraint qualification for convex programs. SIAM J. Optim. 14(2), 534–547 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jeyakumar, V., Lee, G.M., Lee, J.H.: Generalized SOS-convexity and strong duality with SDP dual programs in polynomial optimization. J. Convex Anal. 22(4), 999–1023 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Jeyakumar, V., Li, G., Vicente-Pérez, J.: Robust SOS-convex polynomial optimization problems: exact SDP relaxations. Optim. Lett. 9(1), 1–18 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jeyakumar, V., Kim, S., Lee, G.M., Li, G.: Semidefinite programming relaxation methods for global optimization problems with sparse polynomials and unbounded semialgebraic feasible sets. J. Glob. Optim. 65(2), 175–190 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jeyakumar, V., Lee, G.M., Lee, J.H.: Sums of squares characterizations of containment of convex semialgebraic sets. Pac. J. Optim. 12(1), 29–42 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Jeyakumar, V., Lee, G.M., Linh, N.T.H.: Generalized Farkas’ lemma and gap-free duality for minimax DC optimization with polynomials and robust quadratic optimization. J. Glob. Optim. 64(4), 679–702 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kojima, M., Kim, S., Waki, H.: Sparsity in sums of squares of polynomials. Math. Program. 103(1), 45–62 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lasserre, J.B.: Convexity in semialgebraic geometry and polynomial optimization. SIAM J. Optim. 19(4), 1995–2014 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications. Imperial College Press, London (2010)

    MATH  Google Scholar 

  30. Le Thi, H.A., Pham Dinh, T.: Solving a class of linearly constrained indefinite quadratic problems by D.C. algorithms. J. Glob. Optim. 11(3), 253–285 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Le Thi, H.A., Pham Dinh, T.: The DC (difference of convex functions) programming and DCA revisited with DC models of real world non-convex optimization problems. Ann. Oper. Res. 133, 23–46 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Le Thi, H.A., Van Ngai, H., Pham Dinh, T.: DC programming and DCA for general DC programs. In: Van Do, T., et al. (eds.) Advanced Computational Methods for Knowledge Engineering. Advances in Intelligent Systems and Computing, vol. 282, pp. 15–35. Springer, Berlin (2014)

    Chapter  Google Scholar 

  33. Lemaire, B.: Duality in reverse convex optimization. SIAM J. Optim. 8(4), 1029–1037 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lemaire, B., Volle, M.: A general duality scheme for nonconvex minimization problems with a strict inequality constraint. J. Glob. Optim. 13(3), 317–327 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Löfberg J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference, Taipei, Taiwan (2004)

  36. Martinez-Legaz, J.E., Volle, M.: Duality in DC programming: the case of several DC constraints. J. Math. Anal. Appl. 237(2), 657–671 (1998)

    Article  MATH  Google Scholar 

  37. Nie, J.: Polynomial matrix inequality and semidefinite representation. Math. Oper. Res. 36(3), 398–415 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Niu, Y.S., Pham Dinh, T.: DC programming approaches for BMI and QMI feasibility problems. In: Do Van, T., et al. (eds.) Advanced Computational Methods for Knowledge Engineering. Advances in Intelligent Systems and Computing, pp. 37–63. Springer, New York (2014)

    Chapter  Google Scholar 

  39. Niu, Y.S., Judice, J.J., Le Thi, H.A., Dinh, T.P.: Solving the quadratic eigenvalue complementarity problem by DC programming. In: Le Thi, H.A., et al. (eds.) Modelling, Computation and Optimization in Information Systems and Management Sciences. Advances in Intelligent Systems and Computing, pp. 203–214. Springer, New York (2015)

    Google Scholar 

  40. Prajna, S., Papachristodoulou, A., Seiler, P., Parrilo, P.A.: SOSTOOLS: sum of squares optimization toolbox for MATLAB, version 2.00. California Institute of Technology Pasadena (2004)

  41. Reznick, B.: Some concrete aspects of Hilbert’s 17th problem. In: Delzell, C.N., Madden, J.J. (eds.) Real Algebraic Geometry and Ordered Structures. Contemporary Mathematics, vol. 253, pp. 251–272. American Mathematical Society, Providence, RI (2000)

  42. Reznick, B.: Extremal PSD forms with few terms. Duke Math. J. 45(2), 363–374 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  44. Sturm, J.F.: Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12(1–4), 625–653 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  45. Toland, J.F.: Duality in nonconvex optimization. J. Math. Anal. Appl. 66(2), 399–415 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  46. Volle, M.: Concave duality: application to problems dealing with difference of functions. Math. Program. 41(2), 261–278 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  47. Waki, H., Kim, S., Kojima, M., Muramatsu, M.: Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17(1), 218–242 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zalinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing Co., Inc., River Edge (2002)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIT) (NRF-2016R1A2B1006430). The authors would like to express their sincere thanks to anonymous referees for valuable suggestions and comments for the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gue Myung Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Lee, G.M. On minimizing difference of a SOS-convex polynomial and a support function over a SOS-concave matrix polynomial constraint. Math. Program. 169, 177–198 (2018). https://doi.org/10.1007/s10107-017-1210-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-017-1210-z

Keywords

Mathematics Subject Classification

Navigation