Skip to main content
Log in

Ambiguous risk constraints with moment and unimodality information

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Optimization problems face random constraint violations when uncertainty arises in constraint parameters. Effective ways of controlling such violations include risk constraints, e.g., chance constraints and conditional Value-at-Risk constraints. This paper studies these two types of risk constraints when the probability distribution of the uncertain parameters is ambiguous. In particular, we assume that the distributional information consists of the first two moments of the uncertainty and a generalized notion of unimodality. We find that the ambiguous risk constraints in this setting can be recast as a set of second-order cone (SOC) constraints. In order to facilitate the algorithmic implementation, we also derive efficient ways of finding violated SOC constraints. Finally, we demonstrate the theoretical results via computational case studies on power system operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The ACC representation of Example 3.4.4 has typos and, for completeness, we present the corrected representation in Appendix C. We test the corrected ACC representation in this case study.

References

  1. Ahmed, S., Papageorgiou, D.: Probabilistic set covering with correlations. Oper. Res. 61(2), 438–452 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9(3), 203–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bergen, A.R., Vittal, V.: Power Systems Analysis, 2nd edn. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  4. Bertsimas, D., Doan, X.V., Natarajan, K., Teo, C.-P.: Models for minimax stochastic linear optimization problems with risk aversion. Math. Oper. Res. 35(3), 580–602 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bienstock, D., Chertkov, M., Harnett, S.: Chance-constrained optimal power flow: risk-aware network control under uncertainty. SIAM Rev. 56(3), 461–495 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bookbinder, J.H., Tan, J.-Y.: Strategies for the probabilistic lot-sizing problem with service-level constraints. Manag. Sci. 34(9), 1096–1108 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Calafiore, G., El Ghaoui, L.: On distributionally robust chance-constrained linear programs. J. Optim. Theory Appl. 130(1), 1–22 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Charnes, A., Cooper, W., Symonds, G.: Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil. Manag. Sci. 4(3), 235–263 (1958)

    Article  Google Scholar 

  9. Cheng, J., Delage, E., Lisser, A.: Distributionally robust stochastic knapsack problem. SIAM J. Optim. 24(3), 1485–1506 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dharmadhikari, S., Joag-Dev, K.: Unimodality, Convexity, and Applications. Elsevier, Amsterdam (1988)

    MATH  Google Scholar 

  12. El Ghaoui, L., Oks, M., Oustry, F.: Worst-case value-at-risk and robust portfolio optimization: a conic programming approach. Oper. Res. 51(4), 543–556 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Erdoğan, E., Iyengar, G.: Ambiguous chance constrained problems and robust optimization. Math. Program. 107(1), 37–61 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Esfahani, P. M., Kuhn, D.: Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations. Available on optimization-online. http://www.optimization-online.org/DB_FILE/2015/05/4899.pdf (2015)

  15. Gade, D., Küçükyavuz, S.: Formulations for dynamic lot sizing with service levels. Nav. Res. Logist. 60(2), 87–101 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gómez-Expósito, A., Conejo, A.J., Cañizares, C.: Electric Energy Systems: Analysis and Operation. CRC Press, Boca Raton (2008)

    Google Scholar 

  17. Hanasusanto, G. A.: Decision making under uncertainty: robust and data-driven approaches. Ph.D. thesis, Imperial College London (2015)

  18. Hanasusanto, G. A., Roitch, V., Kuhn, D., Wiesemann, W.: Ambiguous joint chance constraints under mean and dispersion information. Available on optimization-online. http://www.optimization-online.org/DB_FILE/2015/11/5199.pdf (2015)

  19. Henrion, R., Li, P., Möller, A., Steinbach, M.C., Wendt, M., Wozny, G.: Stochastic optimization for operating chemical processes under uncertainty. In: Grötschel, M., Krunke, S.O., Rambau, J. (eds.) Online Optimization of Large Scale Systems, pp. 457–478. Springer, Berlin (2001)

    Chapter  MATH  Google Scholar 

  20. Henrion, R., Möller, A.: Optimization of a continuous distillation process under random inflow rate. Comput. Math. Appl. 45(1), 247–262 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, R., Guan, Y.: Data-driven chance constrained stochastic program. Math. Program. 158(1–2), 291–327 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, B., Jiang, R., Mathieu, J. L.: Distributionally robust risk-constrained optimal power flow using moment and unimodality information. In: 55th IEEE Conference on Decision and Control (CDC). IEEE (2016)

  23. Miller, B., Wagner, H.: Chance constrained programming with joint constraints. Oper. Res. 13(6), 930–945 (1965)

    Article  MATH  Google Scholar 

  24. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, Hoboken (1999)

    MATH  Google Scholar 

  25. Ozturk, U., Mazumdar, M., Norman, B.: A solution to the stochastic unit commitment problem using chance constrained programming. IEEE Trans. Power Syst. 19(3), 1589–1598 (2004)

    Article  Google Scholar 

  26. Popescu, I.: A semidefinite programming approach to optimal-moment bounds for convex classes of distributions. Math. Oper. Res. 30(3), 632–657 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Popescu, I.: Robust mean–covariance solutions for stochastic optimization. Oper. Res. 55(1), 98–112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–42 (2000)

    Article  Google Scholar 

  29. Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Finance 26(7), 1443–1471 (2002)

    Article  Google Scholar 

  30. Scarf, H.: A min-max solution of an inventory problem. In: Arrow, K., Karlin, S., Scarf, H. (eds.) Studies in the Mathematical Theory of Inventory and Production, pp. 201–209. Stanford University Press, Palo Alto (1958)

    Google Scholar 

  31. Shapiro, A.: On duality theory of conic linear problems. In: Goberna, M.Á., López M.A. (eds.) Semi-Infinite Programming, pp. 135–165. Kluwer Academic Publishers, Dordrecht (2001)

  32. Shapiro, A., Kleywegt, A.: Minimax analysis of stochastic problems. Optim. Methods Softw. 17(3), 523–542 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sion, M.: On general minimax theorems. Pac. J. Math. 8(1), 171–176 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  34. Stellato, B.: Data-driven chance constrained optimization. Master’s thesis, ETH Zürich (2014)

  35. Van Parys, B. P. G., Goulart, P. J., Kuhn, D.: Generalized Gauss inequalities via semidefinite programming. Math. Program. 156(1–2), 271–302 (2015a)

  36. Van Parys, B. P. G., Goulart, P. J., Morari, M.: Distributionally robust expectation inequalities for structured distributions. Available on optimization-online. http://www.optimization-online.org/DB_FILE/2015/05/4896.pdf (2015b)

  37. Vandenberghe, L., Boyd, S., Comanor, K.: Generalized Chebyshev bounds via semidefinite programming. SIAM Rev. 49(1), 52–64 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Vrakopoulou, M., Margellos, K., Lygeros, J., Andersson, G.: A probabilistic framework for reserve scheduling and \(N-1\) security assessment of systems with high wind power penetration. IEEE Trans. Power Syst. 28(4), 3885–3896 (2013)

    Article  Google Scholar 

  39. Wagner, M.: Stochastic 0–1 linear programming under limited distributional information. Oper. Res. Lett. 36(2), 150–156 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, Q., Guan, Y., Wang, J.: A chance-constrained two-stage stochastic program for unit commitment with uncertain wind power output. IEEE Trans. Power Syst. 27(1), 206–215 (2012)

    Article  MathSciNet  Google Scholar 

  41. Wiesemann, W., Kuhn, D., Sim, M.: Distributionally robust convex optimization. Oper. Res. 62(6), 1358–1376 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12–19 (2011)

    Article  Google Scholar 

  43. Zymler, S., Kuhn, D., Rustem, B.: Distributionally robust joint chance constraints with second-order moment information. Math. Program. 137(1–2), 167–198 (2013a)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zymler, S., Kuhn, D., Rustem, B.: Worst-case value at risk of nonlinear portfolios. Manag. Sci. 59(1), 172–188 (2013b)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported in part by the National Science Foundation (NSF) under Grants CMMI-1555983 and CCF-1442495.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiwei Jiang.

Appendices

Appendix A: proof of Observation 2

Proof

As \(f^k_+(z) = \bigl (\frac{\alpha }{\alpha + 1}\bigr )(1 - k^{-\alpha -1})z - (1 - k^{-\alpha }) \beta \), we have

$$\begin{aligned} \Bigl [f^k_+(z)\Bigr ]_+ = \left\{ \begin{array}{ll} 0, &{}\quad {\text {if }} z < z_0(k) := \bigl (\frac{\alpha +1}{\alpha }\bigr ) \bigl (\frac{1 - k^{-\alpha }}{1 - k^{-\alpha -1}}\bigr ) \beta \\ \bigl (\frac{\alpha }{\alpha + 1}\bigr )(1 - k^{-\alpha -1})z - (1 - k^{-\alpha }) \beta , &{}\quad {\text {if }} z \ge z_0(k) \end{array}\right. \end{aligned}$$

for all \(k \ge 1\). As \([f^{k+1}_+(z)]_+ \ge 0\) for all \(z \in \mathbb {R}\), to show that \([f^{k+1}_+(z)]_+ \ge [f^k_+(z)]_+\), it suffices to prove that \([f^{k+1}_+(z)]_+ \ge f^k_+(z)\) for all \(z \in \mathbb {R}\). First, as \(\beta \le 0\) and \(\frac{1 - k^{-\alpha }}{1 - k^{-\alpha -1}}\) increases in k, we have \(\bigl (\frac{\alpha +1}{\alpha }\bigr ) \bigl (\frac{1 - k^{-\alpha }}{1 - k^{-\alpha -1}}\bigr ) \beta \ge \bigl (\frac{\alpha +1}{\alpha }\bigr ) \bigl (\frac{1 - (k+1)^{-\alpha }}{1 - (k+1)^{-\alpha -1}}\bigr ) \beta \), i.e., \(z_0(k) \ge z_0(k+1)\). It follows that, when \(z < z_0(k)\), \(f^k_+(z) \le 0\) and hence \([f^{k+1}_+(z)]_+ \ge f^k_+(z)\). Second, when \(z \ge z_0(k)\), \(f^{k+1}_+(z) \ge 0\) because \(z \ge z_0(k) \ge z_0(k+1)\) and \(f^{k+1}_+(z)\) increases in z. As both \(f^k_+(z)\) and \(f^{k+1}_+(z)\) are affine functions of z, we have \(f^{k+1}_+(z) = f^{k+1}_+(z_0(k)) + (\frac{\alpha }{\alpha + 1})(1 - (k+1)^{-\alpha -1})(z - z_0(k))\) and \(f^k_+(z) = (\frac{\alpha }{\alpha + 1})(1 - k^{-\alpha -1})(z - z_0(k))\) for \(z \ge z_0(k)\). It follows that \(f^{k+1}_+(z) - f^k_+(z) = f^{k+1}_+(z_0(k)) + (\frac{\alpha }{\alpha + 1})[k^{-\alpha -1} - (k+1)^{-\alpha -1}](z - z_0(k)) \ge 0\). Hence, \([f^{k+1}_+(z)]_+ \ge f^k_+(z)\) when \(z \ge z_0(k)\) and the proof is complete. \(\square \)

Appendix B

For random variable Z and constant \(\beta \in \mathbb {R}\), we make the following observation on the worst-case expectation \(\sup _{{\mathbb P}_Z \in \mathcal {D}(\mu _0, \Sigma _0)} \mathbb {E}_{{\mathbb P}_Z}[Z-\beta ]_+\). Note that this observation can be made following the derivations in [30], and we present a proof below for completeness.

Observation 3

Given \(\beta \in {\mathbb R}\), we have

$$\begin{aligned} \sup _{{\mathbb P}_Z \in \mathcal {D}(\mu _0, \Sigma _0)} \mathbb {E}_{{\mathbb P}_Z}[Z-\beta ]_+ \ = \ \frac{1}{2}\left[ \sqrt{(\beta - \mu _0)^2 + (\Sigma _0 - \mu _0^2)} - \beta + \mu _0 \right] . \end{aligned}$$

Proof

We represent \(\sup _{{\mathbb P}_Z \in \mathcal {D}(\mu _0, \Sigma _0)} \mathbb {E}_{{\mathbb P}_Z}[Z-\beta ]_+\) as the following optimization problem

$$\begin{aligned} v_P \ = \ \max _{{\mathbb P}_Z} \ \mathbb {E}_{{\mathbb P}_Z}[Z-\beta ]_+ \\ ({\text {P}}) \quad \quad \quad {\text {s.t.}}\, \ \mathbb {E}_{{\mathbb P}_Z}[Z] = \mu _0, \\ \ \mathbb {E}_{{\mathbb P}_Z}[Z^2] = \Sigma _0, \\ \ \mathbb {E}_{{\mathbb P}_Z}[1] = 1, \\ {\text {whose dual is}} \quad v_D \ = \ \min _{q, p, r} \ \mu _0 p + \Sigma _0 q + r\\ {\text {(D)}} \quad \quad \quad {\text {s.t.}} \ \ qz^2 + pz + r \ge [z-\beta ]_+, \ \ \forall z \in {\mathbb R}. \end{aligned}$$

The weak duality between (P) and (D), i.e., \(v_D \le v_P\), holds because \(\mu _0 p + \Sigma _0 q + r = \mathbb {E}_{{\mathbb P}_Z}[qZ^2 + pZ + r] \le \mathbb {E}_{{\mathbb P}_Z}[Z-\beta ]_+\) for any feasible solution (qpr) to (D) and feasible solution \({\mathbb P}_Z\) to (P). Now we prove the strong duality by constructing two feasible solutions to (P) and (D), respectively, that have the same objective value. On the one hand, the primal solution \(\hat{{\mathbb P}}_Z\) is supported on two points \(z_1\) and \(z_2\) with probability masses \(p_1\) and \(p_2\), respectively, where \(\Delta = \sqrt{(\beta - \mu _0)^2 + (\Sigma _0 - \mu _0^2)}\) and

$$\begin{aligned} p_1 = \frac{\beta - \mu _0 + \Delta }{2\Delta }, \quad p_2 = \frac{\mu _0 - \beta + \Delta }{2\Delta }, \quad z_1 = \beta - \Delta , \quad {\text {and}} \quad z_2 = \beta + \Delta . \end{aligned}$$

We have \(p_1, p_2 \ge 0\) because \(\Delta \ge |\beta - \mu _0|\). Meanwhile, we have

$$\begin{aligned} p_1z_1 + p_2 z_2 \ = \ \frac{(\beta - \mu _0 + \Delta )(\beta - \Delta )}{2\Delta } + \frac{(\mu _0 - \beta + \Delta )(\beta + \Delta )}{2\Delta } \ = \ \mu _0, \end{aligned}$$

and

$$\begin{aligned} p_1z_1^2 + p_2 z_2^2 \ =&\ \frac{(\beta - \mu _0 + \Delta )(\beta - \Delta )^2}{2\Delta } + \frac{(\mu _0 - \beta + \Delta )(\beta + \Delta )^2}{2\Delta } \\ =&\ \frac{(\beta - \mu _0)\left[ (\beta - \Delta )^2 - (\beta + \Delta )^2 \right] + \Delta \left[ (\beta - \Delta )^2 + (\beta + \Delta )^2 \right] }{2\Delta } \\ =&\ -\beta ^2 + 2\mu _0\beta + \Delta ^2 = -\beta ^2 + 2\mu _0\beta + (\beta - \mu _0)^2 + (\Sigma _0 - \mu _0^2) = \Sigma _0. \end{aligned}$$

Hence, \(\hat{{\mathbb P}}_Z\) is feasible to (P). On the other hand, the dual solution \((\hat{q}, \hat{p}, \hat{r})\) is such that

$$\begin{aligned} \hat{q} = \frac{1}{4\Delta }, \quad \hat{p} = \frac{\Delta - \beta }{2\Delta }, \quad {\text {and}} \quad \hat{r} = \frac{(\Delta - \beta )^2}{4\Delta }. \end{aligned}$$

Hence, \(\hat{q}z^2 + \hat{p}z + \hat{r} = \frac{1}{4\Delta }(z + \Delta - \beta )^2\). It follows that \(\hat{q}z^2 + \hat{p}z + \hat{r} \ge 0\) for all \(z \in {\mathbb R}\). Meanwhile, \((\hat{q}z^2 + \hat{p}z + \hat{r}) - (z - \beta ) = \frac{1}{4\Delta }(z - \beta - \Delta )^2 \ge 0\), i.e., \(\hat{q}z^2 + \hat{p}z + \hat{r} \ge z - \beta \). Thus, \(\hat{q}z^2 + \hat{p}z + \hat{r} \ge [z-\beta ]_+\) and so \((\hat{q}, \hat{p}, \hat{r})\) is feasible to (D).

Finally, the primal objective value associated with \(\hat{{\mathbb P}}_Z\) is \(p_2(z_2 - \beta ) = \frac{(\mu _0 - \beta + \Delta )\Delta }{2\Delta } = \frac{1}{2}(\Delta - \beta + \mu _0)\). Meanwhile, the dual objective value associated with \((\hat{q}, \hat{p}, \hat{r})\) is

$$\begin{aligned}&\mu _0 \left( \frac{\Delta - \beta }{2\Delta }\right) + \Sigma _0 \left( \frac{1}{4\Delta }\right) + \frac{(\Delta - \beta )^2}{4\Delta } \\&\quad = \ \frac{\Delta ^2 + (\beta ^2 - 2\mu _0\beta + \mu _0^2) + (\Sigma _0 - \mu _0^2) + 2\mu _0 \Delta - 2 \Delta \beta }{4\Delta } \\&\quad = \ \frac{2\Delta ^2 + 2\mu _0 \Delta - 2 \Delta \beta }{4\Delta } \ = \ \frac{1}{2}(\Delta - \beta + \mu _0), \end{aligned}$$

which coincides with the primal objective value associated with \(\hat{{\mathbb P}}_Z\). \(\square \)

Appendix C: corrected ACC representation of Example 3.4.4 in [17]

The ACC representation (3.50) in Example 3.4.4 in [17] has typos and is corrected as follows:

$$\begin{aligned}&\beta - (\mu - m)^{\top } \gamma - \langle \Sigma + (\mu - m)(\mu - m)^{\top }, \ \Gamma \rangle \ \ge \ {(1 - \epsilon )\tau }, \\&\quad \begin{bmatrix} \tau - \beta&\frac{1}{2} \frac{\alpha }{\alpha +1}\gamma ^{\top } \\ \frac{1}{2} \frac{\alpha }{\alpha +1}\gamma&\frac{\alpha }{\alpha +2}\Gamma \end{bmatrix} \ \succeq \ 0, \\&\quad \begin{bmatrix} {\left[ \alpha ^{\frac{1}{\alpha +1}} + \left( \frac{1}{\alpha }\right) ^{\frac{\alpha }{\alpha +1}}\right] } \tau ^{\frac{1}{\alpha +1}} \left( b(x) - m^{\top }a(x)\right) ^{\frac{\alpha }{\alpha +1}} - \beta&\frac{1}{2} \left( \frac{\alpha }{\alpha +1}\gamma - a(x)\right) ^{\top } \\ \frac{1}{2} \left( \frac{\alpha }{\alpha +1}\gamma - a(x)\right)&\frac{\alpha }{\alpha +2}\Gamma \end{bmatrix} \ \succeq \ 0. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Jiang, R. & Mathieu, J.L. Ambiguous risk constraints with moment and unimodality information. Math. Program. 173, 151–192 (2019). https://doi.org/10.1007/s10107-017-1212-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-017-1212-x

Keywords

Mathematics Subject Classification

Navigation