Skip to main content
Log in

On the equivalence of the primal-dual hybrid gradient method and Douglas–Rachford splitting

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

The primal-dual hybrid gradient (PDHG) algorithm proposed by Esser, Zhang, and Chan, and by Pock, Cremers, Bischof, and Chambolle is known to include as a special case the Douglas–Rachford splitting algorithm for minimizing the sum of two convex functions. We show that, conversely, the PDHG algorithm can be viewed as a special case of the Douglas–Rachford splitting algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Heidelberg (2011)

    Book  Google Scholar 

  2. Bauschke, H.H., Combettes, P.L., Luke, D.R.: Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization. J. Opt. Soc. Am. A 19, 1334–1345 (2002)

    Article  MathSciNet  Google Scholar 

  3. Boţ, R.I., Csetnek, E.R., Heinrich, A., Hendrich, C.: On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems. Math. Program. 150, 251–279 (2015)

    Article  MathSciNet  Google Scholar 

  4. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  5. Chambolle, A., Pock, T.: An introduction to continuous optimization for imaging. Acta Numerica 25, 161–319 (2016)

    Article  MathSciNet  Google Scholar 

  6. Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal-dual algorithm. Math. Program. Ser. A 159, 253–287 (2016)

    Article  MathSciNet  Google Scholar 

  7. Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53(5–6), 475–504 (2004)

    Article  MathSciNet  Google Scholar 

  8. Combettes, P.L., Pesquet, J.-C.: A Douglas–Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J. Sel. Top. Signal Process. 1(4), 564–574 (2007)

    Article  Google Scholar 

  9. Combettes, P.L., Pesquet, J.-C.: Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer, New York (2011)

    Chapter  Google Scholar 

  10. Combettes, P.L., Yamada, I.: Compositions and convex combinations of averaged nonexpansive operators. J. Math. Anal. Appl. 425, 55–70 (2015)

    Article  MathSciNet  Google Scholar 

  11. Condat, L.: A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158(2), 460–479 (2013)

    Article  MathSciNet  Google Scholar 

  12. Davis, D., Yin, W.: A Three-Operator Splitting Scheme and Its Optimization Applications (2015). arXiv:1504.01032

  13. Davis, D., Yin, W.: Faster convergence rates of relaxed Peaceman–Rachford and ADMM under regularity assumptions. Math. Oper. Res. 42, 783–805 (2017)

    Article  MathSciNet  Google Scholar 

  14. Eckstein, J., Bertsekas, D.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  MathSciNet  Google Scholar 

  15. Esser, E., Zhang, X., Chan, T.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015–1046 (2010)

    Article  MathSciNet  Google Scholar 

  16. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. Studies in Mathematics and Its Applications, pp. 299–331. North-Holland, Amsterdam (1983)

    Chapter  Google Scholar 

  17. Giselsson, P.: Tight global linear convergence rate bounds for Douglas–Rachford splitting. J. Fixed Point Theory Appl. 19, 2241–2270 (2017)

    Article  MathSciNet  Google Scholar 

  18. Giselsson, P., Boyd, S.: Linear convergence and metric selection for Douglas–Rachford splitting and ADMM. IEEE Trans. Automat. Contr. 62(2), 532–544 (2017)

    Article  MathSciNet  Google Scholar 

  19. He, B., Yuan, X.: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imaging Sci. 5(1), 119–149 (2012)

    Article  MathSciNet  Google Scholar 

  20. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

    Article  MathSciNet  Google Scholar 

  21. Mölenhoff, T., Strekalovskiy, E., Moeller, M., Cremers, D.: Low rank priors for color image regularization. In: International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 126–140. Springer (2015)

  22. Mölenhoff, T., Strekalovskiy, E., Moeller, M., Cremers, D.: The primal-dual hybrid gradient method for semiconvex splittings. SIAM J. Imaging Sci. 8(2), 827–857 (2015)

    Article  MathSciNet  Google Scholar 

  23. O’Connor, D., Vandenberghe, L.: Primal-dual decomposition by operator splitting and applications to image deblurring. SIAM J. Imaging Sci. 7(3), 1724–1754 (2014)

    Article  MathSciNet  Google Scholar 

  24. Ouyang, H., He, N., Gray, A.: Stochastic ADMM for nonsmooth optimization. arXiv preprint arXiv:1211.0632 (2012)

  25. Parikh, N., Boyd, S.: Proximal algorithms. Foundations and Trends\(\textregistered \) in Optimization 1(3), 127–239 (2014)

    Article  MathSciNet  Google Scholar 

  26. Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In: Proceedings 2011 IEEE International Conference on Computer Vision, pp. 1762–1769 (2011)

  27. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the Mumford–Shah functional. In: Proceedings of the IEEE 12th International Conference on Computer Vision (ICCV), pp. 1133–1140 (2009)

  28. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)

    Article  MathSciNet  Google Scholar 

  29. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    Article  MathSciNet  Google Scholar 

  30. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, New York (1998)

    Book  Google Scholar 

  31. Shefi, R., Teboulle, M.: Rate of convergence analysis of decomposition methods based on the proximal method of multipliers for convex minimization. SIAM J. Optim. 24(1), 269–297 (2014)

    Article  MathSciNet  Google Scholar 

  32. Spingarn, J.E.: Partial inverse of a monotone operator. Appl. Math. Optim. 10, 247–265 (1983)

    Article  MathSciNet  Google Scholar 

  33. Spingarn, J.E.: Applications of the method of partial inverses to convex programming: decomposition. Math. Program. 32, 199–223 (1985)

    Article  MathSciNet  Google Scholar 

  34. Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math. 38, 667–681 (2013)

    Article  MathSciNet  Google Scholar 

  35. Yan, M.: A new primal-dual algorithm for minimizing the sum of three functions with a linear operator. J. Sci. Comput. 76(3), 1698–1717 (2018). https://doi.org/10.1007/s10915-018-0680-3

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel O’Connor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Connor, D., Vandenberghe, L. On the equivalence of the primal-dual hybrid gradient method and Douglas–Rachford splitting. Math. Program. 179, 85–108 (2020). https://doi.org/10.1007/s10107-018-1321-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-018-1321-1

Keywords

Mathematics Subject Classification

Navigation