Skip to main content
Log in

A differentiable homotopy method to compute perfect equilibria

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

The notion of perfect equilibrium was formulated by Selten (Int J Game Theory 4(1):25–55, 1975) as a strict refinement of Nash equilibrium. For an extensive-form game with perfect recall, every perfect equilibrium of its agent normal-form game yields a perfect equilibrium of the extensive-form game. This paper aims to develop a differentiable homotopy method for computing perfect equilibria of normal-form games. To accomplish this objective, we constitute an artificial game by introducing a continuously differentiable function of an extra variable. The artificial game defines a differentiable homotopy mapping and establishes the existence of a smooth path to a perfect equilibrium. For numerical comparison, we also describe a simplicial homotopy method. Numerical results show that the differentiable homotopy method is numerically stable and efficient and significantly outperforms the simplicial homotopy method especially when the problem is large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Allgower, E.L., Georg, K.: Numerical Continuation Methods: An Introduction. Springer, Berlin (1990)

    Book  Google Scholar 

  2. Chen, Y., Dang, C.: A reformulation-based smooth path-following method for computing Nash equilibria. Econ. Theory Bull. 4(2), 231–246 (2016)

    Article  MathSciNet  Google Scholar 

  3. Chen, Y., Dang, C.: A reformulation-based simplicial homotopy method for approximating perfect equilibria. Comput. Econ. (2018). https://doi.org/10.1007/s10614-018-9847-0

    Article  Google Scholar 

  4. Chen, Y., Dang, C.: An extension of quantal response equilibrium and determination of perfect equilibrium. Games Econ. Behav. (2018). https://doi.org/10.1016/j.geb.2017.12.023

    Article  MATH  Google Scholar 

  5. Dang, C.: The \(D_2\)-triangulation for simplicial homotopy algorithms for computing solutions of nonlinear equations. Math. Program. 59, 307–324 (1993)

    Article  Google Scholar 

  6. Eaves, B.C.: The linear complementarity problem. Manag. Sci. 17(9), 612–634 (1971)

    Article  MathSciNet  Google Scholar 

  7. Eaves, B.C., Schmedders, K.: General equilibrium models and homotopy methods. J. Econ. Dyn. Control 23, 1249–1279 (1999)

    Article  MathSciNet  Google Scholar 

  8. Farina, G., Gatti, N.: Extensive-form perfect equilibrium computation in two-player games. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), pp. 502–508 (2017)

  9. Garcia, C.B., Zangwill, W.I.: Pathways to Solutions, Fixed Points, and Equilibria. Prentice-Hall, Englewood Cliffs (1981)

    MATH  Google Scholar 

  10. Govindan, S., Klumpp, T.: Perfect equilibrium and lexicographic beliefs. Int. J. Game Theory 31, 229–243 (2002)

    Article  MathSciNet  Google Scholar 

  11. Govindan, S., Wilson, R.: A global Newton method to compute Nash equilibria. J. Econ. Theory 110, 65–86 (2003)

    Article  MathSciNet  Google Scholar 

  12. Govindan, S., Wilson, R.: Computing Nash equilibria by iterated polymatrix approximation. J. Econ. Dyn. Control 28, 1229–1241 (2004)

    Article  MathSciNet  Google Scholar 

  13. Hansen, K.A., Miltersen, P.B., Sørensen, T.B.: The computational complexity of trembling hand perfection and other equilibrium refinements. In: SAGT 10 (2010)

  14. Harsanyi, J.C., Selten, R.: A General Theory of Equilibrium Selection in Games. MIT Press, Cambridge (1988)

    MATH  Google Scholar 

  15. Herings, P.J.J.: Two simple proofs of the feasibility of the linear tracing procedure. Econ. Theory 15, 485–490 (2000)

    Article  MathSciNet  Google Scholar 

  16. Herings, P.J.J., Peeters, R.J.A.P.: A differentiable homotopy to compute Nash equilibria of \(n\)-person games. Econ. Theory 18, 159–185 (2001)

    Article  MathSciNet  Google Scholar 

  17. Herings, P.J.J., Peeters, R.J.A.P.: Homotopy methods to compute equilibria in game theory. Econ. Theory 42(1), 119–156 (2010)

    Article  MathSciNet  Google Scholar 

  18. Herings, P.J.J., Schmedders, K.: Computing equilibria in finance economies with incomplete markets and transaction costs. Econ. Theory 27(3), 493–512 (2006)

    Article  MathSciNet  Google Scholar 

  19. Luo, X.D., Luo, Z.Q.: Extension of Hoffman’s error bound to polynomial systems. SIAM J. Optim. 4, 383–392 (1994)

    Article  MathSciNet  Google Scholar 

  20. Mas-Colell, A.: A note on a theorem of F. Browder. Math. Program. 6, 229–233 (1974)

    Article  MathSciNet  Google Scholar 

  21. McDonald, S., Wagner, L.: The computation of perfect and proper equilibrium for finite games via simulated annealing. Risk and Uncertainty Working Paper: R10\(\#\)1, University of Queensland, Australia (2010)

  22. McKelvey, R.D., McLenna, A.: Computation of equilibria in finite games. Handbook of Computational Economics, vol. 1, pp. 87–142. Elsevier, Amsterdam (1996)

    Google Scholar 

  23. McKelvey, R.D., Palfrey, T.R.: Quantal response equilibria for normal form games. Games Econ. Behav. 10, 6–38 (1995)

    Article  MathSciNet  Google Scholar 

  24. Mertens, J.F.: Stable equilibria—a reformulation. Part I. Definition and basic properties. Math. Oper. Res. 14(4), 575–625 (1989)

    Article  MathSciNet  Google Scholar 

  25. Myerson, R.B.: Refinements of the Nash equilibrium concept. Int. J. Game Theory 7(2), 73–80 (1978)

    Article  MathSciNet  Google Scholar 

  26. Myerson, R.B.: Game Theory. Harvard University Press, Cambridge (1991)

    MATH  Google Scholar 

  27. Osborne, M.J., Rubonstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)

    Google Scholar 

  28. Schanuel, S.H., Simon, L.K., Zame, W.R.: The algebraic geometry of games and the tracing procedure. In: Selten, R. (ed.) Game Equilibrium Models II: Methods, Morals and Markets. Springer, Berlin (1991)

    Google Scholar 

  29. Selten, R.: Reexamination of the perfectness concept for equilibrium points in extensive games. Int. J. Game Theory 4(1), 25–55 (1975)

    Article  MathSciNet  Google Scholar 

  30. van Damme, E.: Stability and Perfection of Nash Equilibria, 2nd edn. Springer, Berlin (2002)

    MATH  Google Scholar 

  31. van den Elzen, A.H., Talman, A.J.J.: A procedure for finding Nash equilibria in bi-matrix games. ZOR Methods Models Oper. Res. 35, 27–43 (1991)

    Article  MathSciNet  Google Scholar 

  32. van den Elzen, A.H., Talman, A.J.J.: An algorithmic approach towards the tracing procedure of Harsanyi and Selten. Games Econ. Behav. 28, 130–145 (1999)

    Article  Google Scholar 

  33. von Stengel, B.: Computing equilibria for two-person games. In: Aumann, R., Hart, S. (eds.) Handbook of Game Theory, vol. 3, pp. 1723–1759. North-Holland, Amsterdam (2002)

    Google Scholar 

  34. von Stengel, B., van den Elzen, A., Talman, D.: Computing normal form perfect equilibria for extensive two-person games. Econometrica 70(2), 693–715 (2002)

    Article  MathSciNet  Google Scholar 

  35. Todd, M.J.: The Computation of Fixed Points and Applications. Lecture Notes in Economics and Mathematical Systems, vol. 124. Springer, Berlin (1976)

    Book  Google Scholar 

  36. Yamamoto, Y.: A path-following procedure to find a proper equilibrium of finite games. Int. J. Game Theory 22, 249–259 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuangyin Dang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors would like to thank the editor and reviewers for their valuable comments and suggestions, which have significantly enhanced the quality of this paper. This work was partially supported by GRF: CityU 11302715 of Hong Kong SAR Government.

Appendices

Appendix 1

This appendix proves that the Jacobian matrix \(Dp(y,\mu ,t;\alpha )\) of \(p(y,\mu ,t;\alpha )\) is of full-row rank for any \((y,\mu ,t;\alpha )\in {\mathbb {R}}^m\times {\mathbb {R}}^n\times (0,1]\times {\mathbb {R}}^m\). This property is used in the proof of Theorems 2 and 3.

Let \(\varphi (y,t)=(u^i(s^i_j,x^{-i}(y,t)):i\in N,j\in M_i)^{\top }\). We have

$$\begin{aligned} D_y\varphi (y,t)=\left( \begin{array}{ccc} 2\max \{0, y^1_1\}\frac{\partial u^1(s^1_1,x^{-1}(y,t))}{\partial x^1_1} &{}\cdots &{} 2\max \{0, y^n_{m_n}\}\frac{\partial u^1(s^1_1,x^{-1}(y,t))}{\partial x^n_{m_n}}\\ 2\max \{0, y^1_1\}\frac{\partial u^1(s^1_2,x^{-1}(y,t))}{\partial x^1_1} &{}\cdots &{} 2\max \{0, y^n_{m_n}\}\frac{\partial u^1(s^1_2,x^{-1}(y,t))}{\partial x^n_{m_n}}\\ \vdots &{} \ddots &{} \vdots \\ \\ 2\max \{0, y^1_1\}\frac{\partial u^n(s^n_{m_n},x^{-n}(y,t))}{\partial x^1_1} &{}\cdots &{} 2\max \{0, y^n_{m_n}\} \frac{\partial u^n(s^n_{m_n},x^{-n}(y,t))}{\partial x^n_{m_n}} \end{array}\right) \end{aligned}$$

and

$$\begin{aligned} D_t\varphi (y,t)=\eta _0\left( \begin{array}{c} \sum \limits _{i\in N}\sum \limits _{j\in M_i}\frac{\partial u^1(s^1_1,x^{-1}(y,t))}{\partial x^i_j}\\ \sum \limits _{i\in N}\sum \limits _{j\in M_i}\frac{\partial u^1(s^1_2,x^{-1}(y,t))}{\partial x^i_j} \\ \vdots \\ \sum \limits _{i\in N}\sum \limits _{j\in M_i}\frac{\partial u^n(s^n_{m_n},x^{-n}(y,t))}{\partial x^i_j} \end{array}\right) . \end{aligned}$$

The Jacobian matrix \(Dp(y, \mu , t; \alpha )\) of \(p(y, \mu , t; \alpha )\) is given by

$$\begin{aligned} \begin{array}{rl} &{} Dp(y, \mu , t; \alpha )\\ &{}\quad = \left( \begin{array}{cccc} (1-\theta (t))D_y\varphi (y,t)+A &{}\quad -E^\top &{}\quad (1-\theta (t))D_t\varphi (y,t)+C &{}\quad -t(1-t)I\\ B &{}\quad 0 &{}\quad F &{}\quad 0 \end{array}\right) , \end{array} \end{aligned}$$

where I is an \(m\times m\) identity matrix, \(A= \begin{pmatrix} A_1\\ {} &{}\ddots \\ &{}&{}A_n \end{pmatrix}\) with

$$\begin{aligned} A_i=\begin{pmatrix} 2\min \{0, y^i_1\}-2\theta (t)\max \{0, y^i_1\}\\ {} &{}\ddots \\ &{}&{} 2\min \{0, y^i_{m_i}\}-2\theta (t)\max \{0, y^i_{m_i}\} \end{pmatrix}, \end{aligned}$$

\(B= \begin{pmatrix} B_1^\top \\ {} &{}\ddots \\ &{}&{}B_n^\top \end{pmatrix}\) with \(B_i= \begin{pmatrix} 2\max \{0,y^i_1\}\\ \vdots \\ 2\max \{0, y^i_{m_i}\} \end{pmatrix}\), \(C=\begin{pmatrix}C_1\\ \vdots \\ C_n\end{pmatrix}\) with

$$\begin{aligned} C_i=-\theta (t)\eta _0e_{i}-\frac{d\theta (t)}{dt}\begin{pmatrix}u^i(s^i_1, x^{-i}(y,t))+x^i_1(y,t)-x^{0i}_1\\ \vdots \\ u^i(s^i_{m_i}, x^{-i}(y,t))+x^i_{m_i}(y,t)-x^{0i}_{m_i}\end{pmatrix} -(1-2t)\begin{pmatrix}\alpha ^i_1\\ \vdots \\ \alpha ^i_{m_i}\end{pmatrix}, \end{aligned}$$

\(E=\begin{pmatrix} e_1^\top \\ {} &{}\ddots \\ &{}&{}e_n^\top \end{pmatrix}\) with \(e_i=(1,1,\cdots ,1)^\top \in {\mathbb {R}}^{m_i}\), and \(F=\eta _0(1,1,\ldots ,1)^{\top }\in {\mathbb {R}}^n\). Thus, for any \(t\in (0,1)\), \(Dp(y,\mu ,t;\alpha )\) is of full-row rank.

When \(t=1\),

$$\begin{aligned} Dp(y, \mu , t; \alpha )= \begin{pmatrix} A &{}\quad -E^\top &{}\quad C &{}\quad 0\\ B &{}\quad 0 &{}\quad F &{}\quad 0 \end{pmatrix}. \end{aligned}$$

With Corollary 2, we have \(y^{*i}_j=(x^{0i}_j-\eta _0)^{1/2}\) as \(t=1\). Thus, A is invertible. Applying row operations, one can easily reduce \(Dp(y, \mu , 1;\alpha )\) to

$$\begin{aligned} \begin{pmatrix} A &{}\quad -E^\top &{}\quad C &{}\quad 0\\ 0 &{}\quad BA^{-1}E^\top &{}\quad F-BA^{-1}C &{}\quad 0 \end{pmatrix}. \end{aligned}$$

Note that

$$\begin{aligned} BA^{-1}E^\top= & {} \begin{pmatrix} \sum \limits _{j=1}^{m_1}\frac{2\max \{0,y^1_j\}}{2\min \{0, y^1_j\}-2\max \{0, y^1_j\}}\\ &{}\ddots \\ &{}&{}\sum \limits _{j=1}^{m_n}\frac{2\max \{0,y^n_j\}}{2\min \{0, y^n_j\}-2\max \{0, y^n_j\}} \end{pmatrix}\\= & {} -\begin{pmatrix} m_1\\ &{}\ddots \\ &{}&{}m_n \end{pmatrix}. \end{aligned}$$

Thus, \(Dp(y,\mu ,1;\alpha )\) is of full-row rank.

Appendix 2

The predictor-corrector method in this paper is as follows. We first parameterize \((y,\mu ,t)\) with the path length \(\xi \) so that \(y=y(\xi )\), \(\mu =\mu (\xi )\) and \(t=t(\xi )\). Let \(Dp_\alpha (y(\xi ),\mu (\xi ),t(\xi ))\) denote the Jacobian matrix of \(p_\alpha (y(\xi ),\mu (\xi ),t(\xi ))\). Then, consider the initial-value problem given by

$$\begin{aligned}&Dp_\alpha (y(\xi ),\mu (\xi ),t(\xi ))\left( \frac{dy(\xi )}{d\xi },\frac{d\mu (\xi )}{d\xi }, \frac{dt(\xi )}{d\xi }\right) ^{\top }=0,\\&\left\| \left( \frac{dy(\xi )}{d\xi },\frac{d\mu (\xi )}{d\xi }, \frac{dt(\xi )}{d\xi }\right) \right\| _2=1,\\&\text{ sign }\left( \det \left( \begin{array}{c}Dp_\alpha (y(\xi ),\mu (\xi ),t(\xi ))\\ \left( \frac{dy(\xi )}{d\xi },\frac{d\mu (\xi )}{d\xi }, \frac{dt(\xi )}{d\xi }\right) \end{array}\right) \right) =b_0,\\&y^{i}(0)=(x^{0i}-\eta _0e_i)^{1/2},\;\mu _i(0)=0,\;t(0)=1,\;i\in N, \end{aligned}$$

where \(e_i=(1,1,\cdots ,1)^\top \in {\mathbb {R}}^{m_i}\) and \(b_0\) is a number in \(\{-1,1\}\) given by

$$\begin{aligned} b_0=\text{ sign }\left( \det \left( \begin{array}{c}Dp_\alpha ( y(0),\mu (0),t(0))\\ \left( \frac{dy(\xi )}{d\xi },\frac{d\mu (\xi )}{d\xi }, \frac{dt(\xi )}{d\xi }\right) \end{array}\right) \right) \end{aligned}$$

with \(\left( \frac{dy(\xi )}{d\xi },\frac{d\mu (\xi )}{d\xi }, \frac{dt(\xi )}{d\xi }\right) \) being the solution of

$$\begin{aligned}&Dp_\alpha (y(0),\mu (0),t(0))\left( \frac{dy(\xi )}{d\xi },\frac{d\mu (\xi )}{d\xi }, \frac{dt(\xi )}{d\xi }\right) ^\top =0,\\&\left\| \left( \frac{dy(\xi )}{d\xi },\frac{d\mu (\xi )}{d\xi }, \frac{dt(\xi )}{d\xi }\right) \right\| _2=1,\\&\frac{dt(0)}{d\xi }<0. \end{aligned}$$

Let \(Dp_\alpha (\xi )\) stand for \(Dp_\alpha (y(\xi ),\mu (\xi ),t(\xi ))\), and \(g(Dp_\alpha (\xi ))\) be the solution of

$$\begin{aligned}&Dp_\alpha (\xi )g=0,\\&\Vert g\Vert _2=1,\\&\text{ sign }\left( \det \left( \begin{array}{c}Dp_\alpha (\xi )\\ g^\top \end{array}\right) \right) =b_0. \end{aligned}$$

Then,

$$\begin{aligned} g(Dp_\alpha (\xi ))= \frac{(I-Dp_\alpha (\xi )^{\top }(Dp_\alpha (\xi ) Dp_\alpha (\xi )^{\top })^{-1}Dp_\alpha (\xi ))q}{\left\| (I-Dp_\alpha (\xi )^{\top }(Dp_\alpha (\xi ) Dp_\alpha (\xi )^{\top })^{-1}Dp_\alpha (\xi ))q\right\| _2}, \end{aligned}$$

where I is a \((m+n+1)\times (m+n+1)\) identity matrix and q is any given vector of \({\mathbb {R}}^{m+n+1}\) satisfying that

$$\begin{aligned} \text{ sign }\left( \det \left( \begin{array}{c}Dp_\alpha (\xi )\\ g(Dp_\alpha (\xi ))^\top \end{array}\right) \right) =b_0. \end{aligned}$$

To solve the above initial value problem, we adopt a predictor-corrector method from Allgower and Georg [1], which is as follows.

Initialization:

Let \(y^{i}(0)=(x^{0i}-\eta _0e_i)^{1/2},\;\mu _i(0)=0\) for \(i\in N\). Let \(y(0)=(y^1(0),\ldots ,y^n(0)),\;\mu (0)=(\mu _1(0),\ldots ,\mu _n(0))\), and \(t(0)=1\). Compute \(Dp_\alpha (y(0),\mu (0),t(0))\). Let \(Dp_\alpha ^0\) stand for \(Dp_\alpha (y(0),\mu (0),t(0))\). Choose an arbitrary vector q of \({\mathbb {R}}^{m+n+1}\) satisfying that

$$\begin{aligned} \left( I-Dp_\alpha ^{0\top }(Dp_\alpha ^0 Dp_\alpha ^{0\top })^{-1}Dp_\alpha ^0\right) q\ne 0. \end{aligned}$$

The initial tangent vector is given by

$$\begin{aligned} g=\frac{\left( I-Dp_\alpha ^{0\top }(Dp_\alpha ^0 Dp_\alpha ^{0\top })^{-1}Dp_\alpha ^0\right) q}{\left\| \left( I-Dp_\alpha ^{0\top }(Dp_\alpha ^0 Dp_\alpha ^{0\top })^{-1}Dp_\alpha ^0\right) q\right\| _2}. \end{aligned}$$

If \(g_{m+n+1}>0\), let \(g=-g\). Compute

$$\begin{aligned} b_0=\text{ sign }\left( \det \left( \begin{array}{c}Dp_\alpha ^0\\ g^\top \end{array}\right) \right) . \end{aligned}$$

Let \(\epsilon \) be a given tolerance and \(\delta \) a sufficiently small positive number. Let \(k=0\) and go to Step 1.

Step 1:

Choose a predictor-step length \({\bar{\beta }}>0\) satisfying that \(\left\| p_\alpha ({\bar{y}},{\bar{\mu }},{\bar{t}})\right\| _{2}<\delta \) and \(0<{\bar{t}}<1\), where

$$\begin{aligned} ({\bar{y}},{\bar{\mu }},{\bar{t}})^\top =(y_k,\mu _k,t_k)^\top +{\bar{\beta }} g. \end{aligned}$$

Solve the following system of nonlinear equations,

$$\begin{aligned} p_\alpha (y,\mu ,t)= & {} 0,\\ (y,\mu ,t)g= & {} ({\bar{y}},{\bar{\mu }},{\bar{t}})g, \end{aligned}$$

using Newton’s method with \(({\bar{y}},{\bar{\mu }},{\bar{t}})\) being the starting point. Let \((y_{k+1},\mu _{k+1},t_{k+1})\) be an approximate solution of the system and \(k=k+1\). Go to Step 2.

Step 2:

If \(t_{k+1}<\epsilon \), then the method terminates and an approximate solution has been found. Otherwise, proceed as follows. Compute \(Dp_\alpha (y_k,\mu _k,t_k)\). Let \(Dp_\alpha ^{(k)}\) stand for \(Dp_\alpha (y_k,\mu _k,t_k)\). Choose an arbitrary vector q of \({\mathbb {R}}^{m+n+1}\) satisfying that

$$\begin{aligned} \left( I-Dp_\alpha ^{(k)\top }(Dp_\alpha ^{(k)} Dp_\alpha ^{(k)\top })^{-1}Dp_\alpha ^{(k)}\right) q \ne 0. \end{aligned}$$

Let

$$\begin{aligned} g=\frac{\left( I-Dp_\alpha ^{(k)\top }(Dp_\alpha ^{(k)} Dp_\alpha ^{(k)\top })^{-1}Dp_\alpha ^{(k)}\right) q}{\left\| \left( I-Dp_\alpha ^{(k)\top }(Dp_\alpha ^{(k)} Dp_\alpha ^{(k)\top })^{-1}Dp_\alpha ^{(k)}\right) q\right\| _2}. \end{aligned}$$

Compute

$$\begin{aligned} b=\text{ sign }\left( \det \left( \begin{array}{c}Dp_\alpha ^{(k)}\\ g^{\top } \end{array}\right) \right) . \end{aligned}$$

If \(b\ne b_0\), let \(g=-g\). Go to Step 1. \(\square \)

The method is a standard predictor-corrector method. Its convergence analysis is referred to Allgower and Georg [1]. As mentioned in Sect. 2, the path leads to some point \((y^*,\mu ^*,0)\) on the target level \(t=0\) such that \(p_\alpha (y^*,\mu ^*,0)=0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Dang, C. A differentiable homotopy method to compute perfect equilibria. Math. Program. 185, 77–109 (2021). https://doi.org/10.1007/s10107-019-01422-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-019-01422-y

Keywords

Mathematics Subject Classification

Navigation