Skip to main content
Log in

Multiple knapsack-constrained monotone DR-submodular maximization on distributive lattice

— Continuous Greedy Algorithm on Median Complex —

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We consider a problem of maximizing a monotone DR-submodular function under multiple order-consistent knapsack constraints on a distributive lattice. Because a distributive lattice is used to represent a dependency constraint, the problem can represent a dependency constrained version of a submodular maximization problem on a set. We propose a (\(1 - 1/e\))-approximation algorithm for this problem. To achieve this result, we generalize the continuous greedy algorithm to distributive lattices: We choose a median complex as a continuous relaxation of the distributive lattice and define the multilinear extension on it. We show that the median complex admits special curves, named uniform linear motions. The multilinear extension of a DR-submodular function is concave along a positive uniform linear motion, which is a key property used in the continuous greedy algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abrams, A., Ghrist, R.: State complexes for metamorphic robots. Int. J. Robot. Res. 23(7–8), 811–826 (2004). https://doi.org/10.1177/0278364904045468

    Article  Google Scholar 

  2. Ageev, A.A., Sviridenko, M.I.: Pipage rounding: a new method of constructing algorithms with proven performance guarantee. J. Comb. Optim. 8(3), 307–328 (2004)

    Article  MathSciNet  Google Scholar 

  3. Alon, N., Gamzu, I., Tennenholtz, M.: Optimizing budget allocation among channels and influencers. In: Proceedings of the 21st International Conference on World Wide Web (WWW’12), pp. 381–388. ACM (2012)

  4. Bandelt, H.J., Chepoi, V.: Metric graph theory and geometry: a survey. Contemp. Math. 453, 49–86 (2008)

    Article  MathSciNet  Google Scholar 

  5. Barnabei, M., Nicoletti, G., Pezzoli, L.: Matroids on partially ordered sets. Adv. Appl. Math. 21(1), 78–112 (1998)

    Article  MathSciNet  Google Scholar 

  6. Brady, T., McCammond, J.: Braids, posets and orthoschemes. Algebraic Geom. Topol. 10(4), 2277–2314 (2010). https://doi.org/10.2140/agt.2010.10.2277

    Article  MathSciNet  MATH  Google Scholar 

  7. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Springer, Berlin (1999)

    Book  Google Scholar 

  8. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766 (2011)

    Article  MathSciNet  Google Scholar 

  9. Chalopin, J., Chepoi, V., Hirai, H., Osajda, D.: Weakly modular graphs and nonpositive curvature. arXiv e-prints arXiv:1409.3892 (2014)

  10. Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via the multilinear relaxation and contention resolution schemes. SIAM J. Comput. 43(6), 1831–1879 (2014)

    Article  MathSciNet  Google Scholar 

  11. Chepoi, V.: Graphs of some cat(0) complexes. Adv. Appl. Math. 24(2), 125–179 (2000). https://doi.org/10.1006/aama.1999.0677. http://www.sciencedirect.com/science/article/pii/S0196885899906772

  12. Conforti, M., Cornuéjols, G.: Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the rado-edmonds theorem. Discrete Appl. Math. 7(3), 251–274 (1984)

    Article  MathSciNet  Google Scholar 

  13. Cornnejols, G., Fisher, M., Nemhauser, G.: Location of bank accounts of optimize float: an analytic study of exact and approximate algorithm. Manag. Sci. 23, 789–810 (1977)

    Article  MathSciNet  Google Scholar 

  14. Ene, A., Nguyen, H.L.: A reduction for optimizing lattice submodular functions with diminishing returns. arXiv preprint arXiv:1606.08362 (2016)

  15. Fujishige, S., Tomizawa, N.: A note on submodular functions on distributive lattices. J. Oper. Res. Soc. Jpn. 26(4), 309–318 (1983)

    MathSciNet  MATH  Google Scholar 

  16. Ghosh, B.K.: Probability inequalities related to markov’s theorem. Am. Stat. 56(3), 186–190 (2002). http://www.jstor.org/stable/3087296

  17. Gottschalk, C., Peis, B.: Submodular function maximization over distributive and integer lattices. arXiv preprint arXiv:1505.05423 (2015)

  18. Grätzer, G.: General Lattice Theory. Springer, New York (2002)

    MATH  Google Scholar 

  19. Hassani, H., Soltanolkotabi, M., Karbasi, A.: Gradient methods for submodular maximization. In: Advances in Neural Information Processing Systems (NIPS’17), pp. 5841–5851 (2017)

  20. Hirai, H.: L-convexity on graph structures. J. Oper. Res. Soc. Jpn. 61(1), 71–109 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963). http://www.jstor.org/stable/2282952

  22. Krause, A., Golovin, D.: Submodular function maximization. In: Tractability: Practical Approaches to Hard Problems, pp. 71–104. Cambridge University Press, Cambridge (2014)

  23. Kulik, A., Shachnai, H., Tamir, T.: Maximizing submodular set functions subject to multiple linear constraints. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’09), pp. 545–554 (2009). http://dl.acm.org/citation.cfm?id=1496770.1496830

  24. Lin, H., Bilmes, J.: A class of submodular functions for document summarization. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics (ACL’11), pp. 510–520 (2011)

  25. Lovász, L.: Submodular functions and convexity. In: Mathematical Programming The State of the Art, pp. 235–257. Springer, New York (1983)

  26. Maehara, T., Nakashima, S.: Rank axiom of modular supermatroids: a connection with directional DR submodular functions (2020)

  27. Murota, K., et al.: Discrete convex analysis: a tool for economics and game theory. J. Mech. Inst. Des. 1(1), 151–273 (2016)

    Google Scholar 

  28. Nakashima, S., Maehara, T.: Subspace selection via DR-submodular maximization on lattices. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI’19), pp. 4618–4625 (2019). https://www.aaai.org/Papers/AAAI/2019/AAAI-MaeharaT2.2673.pdf

  29. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-I. Math. Program. 14(1), 265–294 (1978)

    Article  MathSciNet  Google Scholar 

  30. Roller, M.: POC sets, median algebras and group actions, an extended study of Dunwoody’s construction and Sageev’ theorem. University of Southampton, Technical report (1998)

  31. Shamaiah, M., Banerjee, S., Vikalo, H.: Greedy sensor selection: leveraging submodularity. In: Proceedings of the 49th IEEE Conference on Decision and Control (CDC’10), pp. 2572–2577 (2010)

  32. Soma, T., Yoshida, Y.: Maximizing monotone submodular functions over the integer lattice. Math. Program. 172(1–2), 539–563 (2018)

    Article  MathSciNet  Google Scholar 

  33. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

    Article  MathSciNet  Google Scholar 

  34. Topkis, D.M.: Minimizing a submodular function on a lattice. Oper. Res. 26(2), 305–321 (1978)

    Article  MathSciNet  Google Scholar 

  35. Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC’08), pp. 67–74. ACM (2008)

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 19K20219. The second author is financially supported by JSPS Research Fellowship Grant Number JP19J22607.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanori Maehara.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maehara, T., Nakashima, S. & Yamaguchi, Y. Multiple knapsack-constrained monotone DR-submodular maximization on distributive lattice. Math. Program. 194, 85–119 (2022). https://doi.org/10.1007/s10107-021-01620-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-021-01620-7

Keywords

Mathematics Subject Classification

Navigation